Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 22

1.

Closed Loop Spatial and Temporal Control of Cavitation Activity with Passive Acoustic Mapping.

Patel A, Schoen SJ Jr, Arvanitis CD.

IEEE Trans Biomed Eng. 2018 Nov 20. doi: 10.1109/TBME.2018.2882337. [Epub ahead of print]

PMID:
30475706
2.

Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption.

Arvanitis CD, Askoxylakis V, Guo Y, Datta M, Kloepper J, Ferraro GB, Bernabeu MO, Fukumura D, McDannold N, Jain RK.

Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8717-E8726. doi: 10.1073/pnas.1807105115. Epub 2018 Aug 27.

3.

Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors.

Askoxylakis V, Arvanitis CD, Wong CSF, Ferraro GB, Jain RK.

Adv Drug Deliv Rev. 2017 Sep 15;119:159-174. doi: 10.1016/j.addr.2017.06.011. Epub 2017 Jun 22. Review.

PMID:
28648712
4.

Passive Acoustic Mapping with the Angular Spectrum Method.

Arvanitis CD, Crake C, McDannold N, Clement GT.

IEEE Trans Med Imaging. 2017 Apr;36(4):983-993. doi: 10.1109/TMI.2016.2643565. Epub 2016 Dec 21.

5.

Controlled Drug Release and Chemotherapy Response in a Novel Acoustofluidic 3D Tumor Platform.

Zervantonakis IK, Arvanitis CD.

Small. 2016 May;12(19):2616-26. doi: 10.1002/smll.201503342. Epub 2016 Mar 31.

6.

Targeted, noninvasive blockade of cortical neuronal activity.

McDannold N, Zhang Y, Power C, Arvanitis CD, Vykhodtseva N, Livingstone M.

Sci Rep. 2015 Nov 6;5:16253. doi: 10.1038/srep16253.

7.

Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

Arvanitis CD, Vykhodtseva N, Jolesz F, Livingstone M, McDannold N.

J Neurosurg. 2016 May;124(5):1450-9. doi: 10.3171/2015.4.JNS142862. Epub 2015 Sep 18.

8.

Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation.

Arvanitis CD, Clement GT, McDannold N.

IEEE Trans Med Imaging. 2015 Jun;34(6):1270-81. doi: 10.1109/TMI.2014.2383835. Epub 2014 Dec 25.

9.

Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system.

Aryal M, Arvanitis CD, Alexander PM, McDannold N.

Adv Drug Deliv Rev. 2014 Jun;72:94-109. doi: 10.1016/j.addr.2014.01.008. Epub 2014 Jan 22. Review.

10.
11.

Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain.

Arvanitis CD, Livingstone MS, McDannold N.

Phys Med Biol. 2013 Jul 21;58(14):4749-61. doi: 10.1088/0031-9155/58/14/4749. Epub 2013 Jun 20.

12.

Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

Bazan-Peregrino M, Rifai B, Carlisle RC, Choi J, Arvanitis CD, Seymour LW, Coussios CC.

J Control Release. 2013 Jul 10;169(1-2):40-7. doi: 10.1016/j.jconrel.2013.03.017. Epub 2013 Apr 4.

PMID:
23562636
13.

A non-exothermic cell-embedding tissue-mimicking material for studies of ultrasound-induced hyperthermia and drug release.

Mylonopoulou E, Bazán-Peregrino M, Arvanitis CD, Coussios CC.

Int J Hyperthermia. 2013;29(2):133-44. doi: 10.3109/02656736.2012.762553. Epub 2013 Feb 13.

PMID:
23406389
14.

Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N.

PLoS One. 2012;7(9):e45783. doi: 10.1371/journal.pone.0045783. Epub 2012 Sep 24.

15.

Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.

McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS.

Cancer Res. 2012 Jul 15;72(14):3652-63. doi: 10.1158/0008-5472.CAN-12-0128. Epub 2012 May 2.

16.

Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model.

Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW, Coussios CC.

J Control Release. 2012 Jan 30;157(2):235-42. doi: 10.1016/j.jconrel.2011.09.086. Epub 2011 Oct 1.

PMID:
21982902
17.

Cavitation-enhanced extravasation for drug delivery.

Arvanitis CD, Bazan-Peregrino M, Rifai B, Seymour LW, Coussios CC.

Ultrasound Med Biol. 2011 Nov;37(11):1838-52. doi: 10.1016/j.ultrasmedbio.2011.08.004. Epub 2011 Oct 2.

PMID:
21963037
18.

Cavitation-enhanced delivery of macromolecules into an obstructed vessel.

Rifai B, Arvanitis CD, Bazan-Peregrino M, Coussios CC.

J Acoust Soc Am. 2010 Nov;128(5):EL310-15. doi: 10.1121/1.3496388.

PMID:
21110544
19.

Quantitative contrast-enhanced mammography for contrast medium kinetics studies.

Arvanitis CD, Speller R.

Phys Med Biol. 2009 Oct 21;54(20):6041-64. doi: 10.1088/0031-9155/54/20/002. Epub 2009 Sep 24.

PMID:
19779213
20.

Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl.

Arvanitis CD, Bohndiek SE, Blakesley J, Olivo A, Speller RD.

Med Phys. 2009 Jan;36(1):116-26.

PMID:
19235380
21.

A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.

Bohndiek SE, Cook EJ, Arvanitis CD, Olivo A, Royle GJ, Clark AT, Prydderch ML, Turchetta R, Speller RD.

Phys Med Biol. 2008 Feb 7;53(3):655-72. doi: 10.1088/0031-9155/53/3/010. Epub 2008 Jan 10.

PMID:
18199908
22.

Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.

Arvanitis CD, Bohndiek SE, Royle G, Blue A, Liang HX, Clark A, Prydderch M, Turchetta R, Speller R.

Med Phys. 2007 Dec;34(12):4612-25.

PMID:
18196789

Supplemental Content

Loading ...
Support Center