Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

Femtomolar Detection by Nanocoated Fiber Label-Free Biosensors.

Chiavaioli F, Zubiate P, Del Villar I, Zamarreño CR, Giannetti A, Tombelli S, Trono C, Arregui FJ, Matias IR, Baldini F.

ACS Sens. 2018 May 25;3(5):936-943. doi: 10.1021/acssensors.7b00918. Epub 2018 May 15.

PMID:
29726679
2.

Luminescence-Based Optical Sensors Fabricated by Means of the Layer-by-Layer Nano-Assembly Technique.

De Acha N, Elosua C, Matias I, Arregui FJ.

Sensors (Basel). 2017 Dec 6;17(12). pii: E2826. doi: 10.3390/s17122826. Review.

3.

Micro and Nanostructured Materials for the Development of Optical Fibre Sensors.

Elosua C, Arregui FJ, Villar ID, Ruiz-Zamarreño C, Corres JM, Bariain C, Goicoechea J, Hernaez M, Rivero PJ, Socorro AB, Urrutia A, Sanchez P, Zubiate P, Lopez-Torres D, Acha N, Ascorbe J, Ozcariz A, Matias IR.

Sensors (Basel). 2017 Oct 11;17(10). pii: E2312. doi: 10.3390/s17102312. Review.

4.

Is there a frontier in sensitivity with Lossy mode resonance (LMR) based refractometers?

Ozcariz A, Zamarreño CR, Zubiate P, Arregui FJ.

Sci Rep. 2017 Aug 31;7(1):10280. doi: 10.1038/s41598-017-11145-9.

5.

Optimization in nanocoated D-shaped optical fiber sensors.

Del Villar I, Zubiate P, Zamarreño CR, Arregui FJ, Matias IR.

Opt Express. 2017 May 15;25(10):10743-10756. doi: 10.1364/OE.25.010743.

PMID:
28788764
6.

Humidity Sensor Based on Bragg Gratings Developed on the End Facet of an Optical Fiber by Sputtering of One Single Material.

Ascorbe J, Corres JM, Arregui FJ, Matias IR.

Sensors (Basel). 2017 Apr 29;17(5). pii: E991. doi: 10.3390/s17050991.

7.

Recent Developments in Fiber Optics Humidity Sensors.

Ascorbe J, Corres JM, Arregui FJ, Matias IR.

Sensors (Basel). 2017 Apr 19;17(4). pii: E893. doi: 10.3390/s17040893. Review.

8.

Optical Fibre Sensors Using Graphene-Based Materials: A Review.

Hernaez M, Zamarreño CR, Melendi-Espina S, Bird LR, Mayes AG, Arregui FJ.

Sensors (Basel). 2017 Jan 14;17(1). pii: E155. doi: 10.3390/s17010155. Review.

9.

High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices.

Zubiate P, Zamarreño CR, Sánchez P, Matias IR, Arregui FJ.

Biosens Bioelectron. 2017 Jul 15;93:176-181. doi: 10.1016/j.bios.2016.09.020. Epub 2016 Sep 8.

PMID:
27638106
10.

Nanomaterials for Functional Textiles and Fibers.

Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ.

Nanoscale Res Lett. 2015 Dec;10(1):501. doi: 10.1186/s11671-015-1195-6. Epub 2015 Dec 29.

11.

Analysis of lossy mode resonances on thin-film coated cladding removed plastic fiber.

Corres JM, Del Villar I, Arregui FJ, Matias IR.

Opt Lett. 2015 Nov 1;40(21):4867-70. doi: 10.1364/OL.40.004867.

PMID:
26512470
12.

High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers.

Zubiate P, Zamarreño CR, Del Villar I, Matias IR, Arregui FJ.

Opt Express. 2015 Mar 23;23(6):8045-50. doi: 10.1364/OE.23.008045.

PMID:
25837142
13.

A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films.

Rivero PJ, Goicoechea J, Matias IR, Arregui FJ.

Nanoscale Res Lett. 2014 Jun 13;9(1):301. doi: 10.1186/1556-276X-9-301. eCollection 2014.

14.

Refractometric sensors based on multimode interference in a thin-film coated single-mode-multimode-single-mode structure with reflection configuration.

Del Villar I, Socorro AB, Corres JM, Arregui FJ, Matias IR.

Appl Opt. 2014 Jun 20;53(18):3913-9. doi: 10.1364/AO.53.003913.

PMID:
24979423
15.

Improved multifrequency phase-modulation method that uses rectangular-wave signals to increase accuracy in luminescence spectroscopy.

Medina-Rodríguez S, de la Torre-Vega Á, Sainz-Gonzalo FJ, Marín-Suárez M, Elosúa C, Arregui FJ, Matias IR, Fernández-Sánchez JF, Fernández-Gutiérrez A.

Anal Chem. 2014 Jun 3;86(11):5245-56. doi: 10.1021/ac4030895. Epub 2014 May 20.

PMID:
24806513
16.

A fiber optic ammonia sensor using a universal pH indicator.

Rodríguez AJ, Zamarreño CR, Matías IR, Arregui FJ, Cruz RF, May-Arrioja DA.

Sensors (Basel). 2014 Feb 27;14(3):4060-73. doi: 10.3390/s140304060.

17.

Tunable electro-optic wavelength filter based on lossy-guided mode resonances.

Corres JM, Ascorbe J, Arregui FJ, Matias IR.

Opt Express. 2013 Dec 16;21(25):31668-77. doi: 10.1364/OE.21.031668.

PMID:
24514739
18.

Comparative study of layer-by-layer deposition techniques for poly(sodium phosphate) and poly(allylamine hydrochloride).

Elosua C, Lopez-Torres D, Hernaez M, Matias IR, Arregui FJ.

Nanoscale Res Lett. 2013 Dec 20;8(1):539. doi: 10.1186/1556-276X-8-539.

19.

Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles.

Rivero PJ, Goicoechea J, Urrutia A, Matias IR, Arregui FJ.

Nanoscale Res Lett. 2013 Oct 22;8(1):438. doi: 10.1186/1556-276X-8-438.

20.

Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations.

Ruiz Zamarreño C, Zubiate P, Sagües M, Matias IR, Arregui FJ.

Opt Lett. 2013 Jul 15;38(14):2481-3. doi: 10.1364/OL.38.002481.

PMID:
23939087
21.

Mode transition in complex refractive index coated single-mode-multimode-single-mode structure.

Socorro AB, Del Villar I, Corres JM, Arregui FJ, Matias IR.

Opt Express. 2013 May 20;21(10):12668-82. doi: 10.1364/OE.21.012668.

PMID:
23736487
22.

Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles.

Rivero PJ, Goicoechea J, Urrutia A, Arregui FJ.

Nanoscale Res Lett. 2013 Feb 22;8(1):101. doi: 10.1186/1556-276X-8-101.

23.

Design rules for lossy mode resonance based sensors.

Del Villar I, Hernaez M, Zamarreño CR, Sánchez P, Fernández-Valdivielso C, Arregui FJ, Matias IR.

Appl Opt. 2012 Jul 1;51(19):4298-307. doi: 10.1364/AO.51.004298.

PMID:
22772101
24.

Nine steps towards a better water meter management.

Arregui FJ, Soriano J, Cabrera E, Cobacho R.

Water Sci Technol. 2012;65(7):1273-80. doi: 10.2166/wst.2012.009.

PMID:
22437026
25.

Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering.

Lopez S, del Villar I, Ruiz Zamarreño C, Hernaez M, Arregui FJ, Matias IR.

Opt Lett. 2012 Jan 1;37(1):28-30. doi: 10.1364/OL.37.000028.

PMID:
22212780
26.

An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles.

Rivero PJ, Urrutia A, Goicoechea J, Zamarreño CR, Arregui FJ, Matías IR.

Nanoscale Res Lett. 2011 Apr 7;6(1):305. doi: 10.1186/1556-276X-6-305.

27.

Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study.

Del Villar I, Zamarreño CR, Hernaez M, Arregui FJ, Matias IR.

Opt Express. 2010 Sep 13;18(19):20183-9. doi: 10.1364/OE.18.020183.

PMID:
20940909
28.

Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings.

Hernáez M, Del Villar I, Zamarreño CR, Arregui FJ, Matias IR.

Appl Opt. 2010 Jul 10;49(20):3980-5. doi: 10.1364/AO.49.003980.

PMID:
20648176
29.

Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating.

Viegas D, Goicoechea J, Santos JL, Araújo FM, Ferreira LA, Arregui FJ, Matias IR.

Sensors (Basel). 2009;9(1):519-27. doi: 10.3390/s90100519. Epub 2009 Jan 16.

30.

Low-cost optical amplitude modulator based on a tapered single-mode optical fiber.

Matías IR, López-Amo M, Montero F, Fernández-Valdivielso C, Arregui FJ, Bariáin C.

Appl Opt. 2001 Jan 10;40(2):228-34.

PMID:
18356994
31.

Optical fiber nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process.

Arregui FJ, Matias IR, Liu Y, Lenahan KM, Claus RO.

Opt Lett. 1999 May 1;24(9):596-8.

PMID:
18073794
32.

Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process.

Arregui FJ, Matias IR, Cooper KL, Claus RO.

Opt Lett. 2001 Feb 1;26(3):131-3.

PMID:
18033526
33.

Fringe generation with non-uniformly coated long-period fiber gratings.

Del Villar I, Arregui FJ, Matias IR, Cusano A, Paladino D, Cutolo A.

Opt Express. 2007 Jul 23;15(15):9326-40.

PMID:
19547275
34.

Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly.

Corres JM, del Villar I, Matias IR, Arregui FJ.

Opt Lett. 2007 Jan 1;32(1):29-31.

PMID:
17167573
35.

Spectral evolution with incremental nanocoating of long period fiber gratings.

Del Villar I, Corres JM, Achaerandio M, Arregui FJ, Matias IR.

Opt Express. 2006 Dec 11;14(25):11972-81.

PMID:
19529623
36.

Influence on cladding mode distribution of overlay deposition on long-period fiber gratings.

Del Villar I, Matias IR, Arregui FJ.

J Opt Soc Am A Opt Image Sci Vis. 2006 Mar;23(3):651-8. Erratum in: J Opt Soc Am A Opt Image Sci Vis. 2006 Nov;23(11):2969.

PMID:
16539063
37.

Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials.

Del Villar I, Matias IR, Arregui FJ.

Opt Lett. 2005 Sep 15;30(18):2363-5.

PMID:
16196320
38.

Deposition of overlays by electrostatic self-assembly in long-period fiber gratings.

Del Villar I, Achaerandio M, Matías IR, Arregui FJ.

Opt Lett. 2005 Apr 1;30(7):720-2.

PMID:
15832917
39.

Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition.

Del Villar I, Matías I, Arregui F, Lalanne P.

Opt Express. 2005 Jan 10;13(1):56-69.

PMID:
19488327
40.

Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects.

Matías IR, Del Villar I, Arregui FJ, Claus RO.

Opt Lett. 2003 Jul 1;28(13):1099-101.

PMID:
12879920
41.

Comparative study of the modeling of three-dimensional photonic bandgap structures.

Matias IR, Del Villar I, Arregui FJ, Claus RO.

J Opt Soc Am A Opt Image Sci Vis. 2003 Apr;20(4):644-54.

PMID:
12683490
42.

Supplemental Content

Loading ...
Support Center