Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system.

Tidhar A, Levy Y, Zauberman A, Vagima Y, Gur D, Aftalion M, Israeli O, Chitlaru T, Ariel N, Flashner Y, Zvi A, Mamroud E.

PLoS Negl Trop Dis. 2019 Jun 6;13(6):e0007449. doi: 10.1371/journal.pntd.0007449. eCollection 2019 Jun.

2.

A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes.

Steinberger-Levy I, Shifman O, Zvi A, Ariel N, Beth-Din A, Israeli O, Gur D, Aftalion M, Maoz S, Ber R.

Front Microbiol. 2016 May 19;7:763. doi: 10.3389/fmicb.2016.00763. eCollection 2016.

3.

Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates.

Noy-Porat T, Rosenfeld R, Ariel N, Epstein E, Alcalay R, Zvi A, Kronman C, Ordentlich A, Mazor O.

Toxins (Basel). 2016 Mar 3;8(3). pii: E64. doi: 10.3390/toxins8030064.

4.

Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses.

Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A.

BMC Med Genomics. 2008 May 28;1:18. doi: 10.1186/1755-8794-1-18.

5.

Search for Bacillus anthracis potential vaccine candidates by a functional genomic-serologic screen.

Gat O, Grosfeld H, Ariel N, Inbar I, Zaide G, Broder Y, Zvi A, Chitlaru T, Altboum Z, Stein D, Cohen S, Shafferman A.

Infect Immun. 2006 Jul;74(7):3987-4001.

7.

The solute-binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant.

Gat O, Mendelson I, Chitlaru T, Ariel N, Altboum Z, Levy H, Weiss S, Grosfeld H, Cohen S, Shafferman A.

Mol Microbiol. 2005 Oct;58(2):533-51.

8.

Identification of strain specific markers in Bacillus anthracis by random amplification of polymorphic DNA.

Levy H, Fisher M, Ariel N, Altboum Z, Kobiler D.

FEMS Microbiol Lett. 2005 Mar 1;244(1):199-205.

9.
10.

Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates.

Flashner Y, Mamroud E, Tidhar A, Ber R, Aftalion M, Gur D, Lazar S, Zvi A, Bino T, Ariel N, Velan B, Shafferman A, Cohen S.

Infect Immun. 2004 Feb;72(2):908-15.

11.

Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens.

Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A.

Infect Immun. 2003 Aug;71(8):4563-79.

12.

Identification of genes involved in Yersinia pestis virulence by signature-tagged mutagenesis.

Flashner Y, Mamroud E, Tidhar A, Ber R, Aftalion M, Gur D, Zvi A, Ariel N, Velan B, Shafferman A, Cohen S.

Adv Exp Med Biol. 2003;529:31-3. No abstract available.

PMID:
12756723
13.

Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1: in silico and in vitro screening.

Ariel N, Zvi A, Grosfeld H, Gat O, Inbar Y, Velan B, Cohen S, Shafferman A.

Infect Immun. 2002 Dec;70(12):6817-27.

14.

Comparison of sequence and structure alignments for protein domains.

Marchler-Bauer A, Panchenko AR, Ariel N, Bryant SH.

Proteins. 2002 Aug 15;48(3):439-46.

PMID:
12112669
15.

The aromatic "trapping" of the catalytic histidine is essential for efficient catalysis in acetylcholinesterase.

Barak D, Kaplan D, Ordentlich A, Ariel N, Velan B, Shafferman A.

Biochemistry. 2002 Jul 2;41(26):8245-52.

PMID:
12081473
16.
17.

Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.

Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL.

Acta Crystallogr D Biol Crystallogr. 2000 Nov;56(Pt 11):1385-94.

PMID:
11053835
18.

Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers.

Ordentlich A, Barak D, Kronman C, Benschop HP, De Jong LP, Ariel N, Barak R, Segall Y, Velan B, Shafferman A.

Biochemistry. 1999 Mar 9;38(10):3055-66.

PMID:
10074358
19.
20.

Bovine acetylcholinesterase: cloning, expression and characterization.

Mendelson I, Kronman C, Ariel N, Shafferman A, Velan B.

Biochem J. 1998 Aug 15;334 ( Pt 1):251-9.

21.

Functional characteristics of the oxyanion hole in human acetylcholinesterase.

Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, Shafferman A.

J Biol Chem. 1998 Jul 31;273(31):19509-17.

22.

Aging of somanyl-acetylcholinesterase adducts: facts and models.

Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B.

Biochem J. 1997 Jun 15;324 ( Pt 3):996-8. No abstract available.

23.

Structural modifications of the omega loop in human acetylcholinesterase.

Velan B, Barak D, Ariel N, Leitner M, Bino T, Ordentlich A, Shafferman A.

FEBS Lett. 1996 Oct 14;395(1):22-8.

24.

Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre.

Shafferman A, Ordentlich A, Barak D, Stein D, Ariel N, Velan B.

Biochem J. 1996 Sep 15;318 ( Pt 3):833-40.

25.

The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors.

Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, Shafferman A.

J Biol Chem. 1996 May 17;271(20):11953-62.

26.

Allosteric modulation of acetylcholinesterase activity by peripheral ligands involves a conformational transition of the anionic subsite.

Barak D, Ordentlich A, Bromberg A, Kronman C, Marcus D, Lazar A, Ariel N, Velan B, Shafferman A.

Biochemistry. 1995 Nov 28;34(47):15444-52.

PMID:
7492545
27.

Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase.

Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, Shafferman A.

J Biol Chem. 1995 Feb 3;270(5):2082-91.

28.

Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase.

Shafferman A, Ordentlich A, Barak D, Kronman C, Ber R, Bino T, Ariel N, Osman R, Velan B.

EMBO J. 1994 Aug 1;13(15):3448-55.

29.

Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core.

Barak D, Kronman C, Ordentlich A, Ariel N, Bromberg A, Marcus D, Lazar A, Velan B, Shafferman A.

J Biol Chem. 1994 Mar 4;269(9):6296-305.

30.

Direct observation and elucidation of the structures of aged and nonaged phosphorylated cholinesterases by 31P NMR spectroscopy.

Segall Y, Waysbort D, Barak D, Ariel N, Doctor BP, Grunwald J, Ashani Y.

Biochemistry. 1993 Dec 14;32(49):13441-50.

PMID:
8257680
31.

Engineering resistance to 'aging' of phosphylated human acetylcholinesterase. Role of hydrogen bond network in the active center.

Ordentlich A, Kronman C, Barak D, Stein D, Ariel N, Marcus D, Velan B, Shafferman A.

FEBS Lett. 1993 Nov 15;334(2):215-20.

32.

Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket.

Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, Ariel N, Cohen S, Velan B, Shafferman A.

J Biol Chem. 1993 Aug 15;268(23):17083-95.

33.

Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center.

Shafferman A, Velan B, Ordentlich A, Kronman C, Grosfeld H, Leitner M, Flashner Y, Cohen S, Barak D, Ariel N.

EMBO J. 1992 Oct;11(10):3561-8.

34.

Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding.

Shafferman A, Kronman C, Flashner Y, Leitner M, Grosfeld H, Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D, et al.

J Biol Chem. 1992 Sep 5;267(25):17640-8.

35.

Coupling efficiencies of amino acids in the solid phase synthesis of peptides.

Young JD, Huang AS, Ariel N, Bruins JB, Ng D, Stevens RL.

Pept Res. 1990 Jul-Aug;3(4):194-200.

PMID:
2134063
36.

Serologically defined linear epitopes in the E2 envelope glycoprotein of Semliki Forest virus.

Ariel N, Lehrer S, Elhanaty E, Sabo T, Brodt P, Lachmi B, Katz D, Levin R, Grosfeld H, Velan B, et al.

Arch Virol. 1990;113(1-2):99-106.

PMID:
1696808
37.
38.

Application of chemically synthetic peptides in clinical diagnosis of viruses: theoretical and practical considerations.

Ariel N, Katz D, Alhanaty E.

Adv Biotechnol Processes. 1988;10:81-96. Review. No abstract available.

PMID:
3058148
39.

Effects of transport inhibitors on the generation and transport of a soluble viral glycoprotein.

Chen SS, Doherty R, O'Rourke EJ, Ariel N, Huang AS.

Virology. 1987 Oct;160(2):482-4.

PMID:
2821686
40.

Production of carcinoembryonic antigen from a human colon adenocarcinoma cell line. I. Large-scale cultivation of carcinoembryonic antigen-producing cells on cylindric cellulose-based microcarriers.

Lazar A, Reuveny S, Geva J, Marcus D, Silberstein L, Ariel N, Epstein N, Altbaum Z, Sinai J, Mizrahi A.

Dev Biol Stand. 1987;66:423-8.

PMID:
3582767
41.

Production of carcinoembryonic antigen from a human colon adenocarcinoma cell line. II. Use of monoclonal antibodies to carcinoembryonic antigen for antigen purification and characterization.

Epstein N, Zandani R, Inbar I, Altbaum Z, Lazar A, Reuveny S, Geva J, Marcus D, Mizrahi A, Ariel N.

Dev Biol Stand. 1987;66:429-37.

PMID:
3556272
42.

Radioimmunoassay of carcinoembryonic antigen.

Krantz MJ, Laferté S, Ariel N.

Methods Enzymol. 1982;84:32-48. No abstract available.

PMID:
6808314
43.
44.

Supplemental Content

Support Center