Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

1.

Both R-loop removal and ribonucleotide excision repair activities of RNase H2 contribute substantially to chromosome stability.

Cornelio DA, Sedam HN, Ferrarezi JA, Sampaio NM, Argueso JL.

DNA Repair (Amst). 2017 Apr;52:110-114. doi: 10.1016/j.dnarep.2017.02.012. Epub 2017 Feb 20.

2.

Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains.

Dos Santos LV, Carazzolle MF, Nagamatsu ST, Sampaio NM, Almeida LD, Pirolla RA, Borelli G, Corrêa TL, Argueso JL, Pereira GA.

Sci Rep. 2016 Dec 21;6:38676. doi: 10.1038/srep38676.

3.

Stimulation of Chromosomal Rearrangements by Ribonucleotides.

Conover HN, Lujan SA, Chapman MJ, Cornelio DA, Sharif R, Williams JS, Clark AB, Camilo F, Kunkel TA, Argueso JL.

Genetics. 2015 Nov;201(3):951-61. doi: 10.1534/genetics.115.181149. Epub 2015 Sep 22.

4.

Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens.

Conover HN, Argueso JL.

Environ Mol Mutagen. 2016 Jan;57(1):3-9. doi: 10.1002/em.21967. Epub 2015 Aug 6. Review.

PMID:
26247157
5.

Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production.

Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderón LA, Mieczkowski PA, Argueso JL, Pereira GA.

Microb Cell Fact. 2015 Jan 30;14:13. doi: 10.1186/s12934-015-0196-6.

6.

Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence.

Yadav P, Harcy V, Argueso JL, Dominska M, Jinks-Robertson S, Kim N.

PLoS Genet. 2014 Dec 4;10(12):e1004839. doi: 10.1371/journal.pgen.1004839. eCollection 2014 Dec.

7.

Cascades of genetic instability resulting from compromised break-induced replication.

Vasan S, Deem A, Ramakrishnan S, Argueso JL, Malkova A.

PLoS Genet. 2014 Feb 27;10(2):e1004119. doi: 10.1371/journal.pgen.1004119. eCollection 2014 Feb.

8.

Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae.

Weems AD, Johnson CR, Argueso JL, McMurray MA.

Genetics. 2014 Mar;196(3):711-27. doi: 10.1534/genetics.114.161182. Epub 2014 Jan 7.

9.

The sister chromatid cohesion pathway suppresses multiple chromosome gain and chromosome amplification.

Covo S, Puccia CM, Argueso JL, Gordenin DA, Resnick MA.

Genetics. 2014 Feb;196(2):373-84. doi: 10.1534/genetics.113.159202. Epub 2013 Dec 2.

10.

A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation.

Carvalho-Netto OV, Carazzolle MF, Rodrigues A, Bragança WO, Costa GG, Argueso JL, Pereira GA.

J Biotechnol. 2013 Dec;168(4):701-9. doi: 10.1016/j.jbiotec.2013.08.025. Epub 2013 Aug 29.

PMID:
23994268
11.

Gene copy-number variation in haploid and diploid strains of the yeast Saccharomyces cerevisiae.

Zhang H, Zeidler AF, Song W, Puccia CM, Malc E, Greenwell PW, Mieczkowski PA, Petes TD, Argueso JL.

Genetics. 2013 Mar;193(3):785-801. doi: 10.1534/genetics.112.146522. Epub 2013 Jan 10.

12.

The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis.

Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X, Bustamante CD, Korbel JO, Gu Z, Steinmetz LM, Alani E.

PLoS Genet. 2010 Sep 9;6(9):e1001109. doi: 10.1371/journal.pgen.1001109.

13.

Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.

Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA.

Genome Res. 2009 Dec;19(12):2258-70. doi: 10.1101/gr.091777.109. Epub 2009 Oct 7.

14.

Double-strand breaks associated with repetitive DNA can reshape the genome.

Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA.

Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11845-50. doi: 10.1073/pnas.0804529105. Epub 2008 Aug 13.

15.

Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair.

Heck JA, Argueso JL, Gemici Z, Reeves RG, Bernard A, Aquadro CF, Alani E.

Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3256-61. Epub 2006 Feb 21.

16.

Competing crossover pathways act during meiosis in Saccharomyces cerevisiae.

Argueso JL, Wanat J, Gemici Z, Alani E.

Genetics. 2004 Dec;168(4):1805-16.

17.

Mismatch repair proteins: key regulators of genetic recombination.

Surtees JA, Argueso JL, Alani E.

Cytogenet Genome Res. 2004;107(3-4):146-59. Review.

PMID:
15467360
19.
20.

Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage.

Xie Y, Liu Y, Argueso JL, Henricksen LA, Kao HI, Bambara RA, Alani E.

Mol Cell Biol. 2001 Aug;21(15):4889-99.

Supplemental Content

Loading ...
Support Center