Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Biased competition in the absence of input bias revealed through corticostriatal computation.

Ardid S, Sherfey JS, McCarthy MM, Hass J, Pittman-Polletta BR, Kopell N.

Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8564-8569. doi: 10.1073/pnas.1812535116. Epub 2019 Apr 8.

2.

Feature-specific prediction errors and surprise across macaque fronto-striatal circuits.

Oemisch M, Westendorff S, Azimi M, Hassani SA, Ardid S, Tiesinga P, Womelsdorf T.

Nat Commun. 2019 Jan 11;10(1):176. doi: 10.1038/s41467-018-08184-9.

3.

Flexible resonance in prefrontal networks with strong feedback inhibition.

Sherfey JS, Ardid S, Hass J, Hasselmo ME, Kopell NJ.

PLoS Comput Biol. 2018 Aug 9;14(8):e1006357. doi: 10.1371/journal.pcbi.1006357. eCollection 2018 Aug.

4.

DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.

Sherfey JS, Soplata AE, Ardid S, Roberts EA, Stanley DA, Pittman-Polletta BR, Kopell NJ.

Front Neuroinform. 2018 Mar 15;12:10. doi: 10.3389/fninf.2018.00010. eCollection 2018.

5.

A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque.

Hassani SA, Oemisch M, Balcarras M, Westendorff S, Ardid S, van der Meer MA, Tiesinga P, Womelsdorf T.

Sci Rep. 2017 Jan 16;7:40606. doi: 10.1038/srep40606.

6.

Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

Balcarras M, Ardid S, Kaping D, Everling S, Womelsdorf T.

J Cogn Neurosci. 2016 Feb;28(2):333-49. doi: 10.1162/jocn_a_00894. Epub 2015 Oct 21.

PMID:
26488586
7.

Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex.

Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T.

J Neurosci. 2015 Feb 18;35(7):2975-91. doi: 10.1523/JNEUROSCI.2700-14.2015.

8.

Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control.

Womelsdorf T, Ardid S, Everling S, Valiante TA.

Curr Biol. 2014 Nov 17;24(22):2613-21. doi: 10.1016/j.cub.2014.09.046. Epub 2014 Oct 9.

9.

Anterior Cingulate Cortex Cells Identify Process-Specific Errors of Attentional Control Prior to Transient Prefrontal-Cingulate Inhibition.

Shen C, Ardid S, Kaping D, Westendorff S, Everling S, Womelsdorf T.

Cereb Cortex. 2015 Aug;25(8):2213-28. doi: 10.1093/cercor/bhu028. Epub 2014 Mar 2.

10.

A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution.

Ardid S, Wang XJ.

J Neurosci. 2013 Dec 11;33(50):19504-17. doi: 10.1523/JNEUROSCI.1356-13.2013.

11.

Subnetwork selection in deep cortical layers is mediated by beta-oscillation dependent firing.

Womelsdorf T, Westendorff S, Ardid S.

Front Syst Neurosci. 2013 Jun 24;7:25. doi: 10.3389/fnsys.2013.00025. eCollection 2013. No abstract available.

12.

What Can Tracking Fluctuations in Dozens of Sensory Neurons Tell about Selective Attention?

Murray JD, Ardid S.

Front Syst Neurosci. 2011 May 27;5:35. doi: 10.3389/fnsys.2011.00035. eCollection 2011. No abstract available.

13.
14.

An integrated microcircuit model of attentional processing in the neocortex.

Ardid S, Wang XJ, Compte A.

J Neurosci. 2007 Aug 8;27(32):8486-95.

Supplemental Content

Support Center