Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements.

Mohammadi P, Aranko AS, Landowski CP, Ikkala O, Jaudzems K, Wagermaier W, Linder MB.

Sci Adv. 2019 Sep 13;5(9):eaaw2541. doi: 10.1126/sciadv.aaw2541. eCollection 2019 Sep.

2.

Phase transitions as intermediate steps in the formation of molecularly engineered protein fibers.

Mohammadi P, Aranko AS, Lemetti L, Cenev Z, Zhou Q, Virtanen S, Landowski CP, Penttilä M, Fischer WJ, Wagermaier W, Linder MB.

Commun Biol. 2018 Jul 2;1:86. doi: 10.1038/s42003-018-0090-y. eCollection 2018.

3.

Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool.

Ciragan A, Aranko AS, Tascon I, Iwaï H.

J Mol Biol. 2016 Nov 20;428(23):4573-4588. doi: 10.1016/j.jmb.2016.10.006. Epub 2016 Oct 6.

PMID:
27720988
4.

Nature's recipe for splitting inteins.

Aranko AS, Wlodawer A, Iwaï H.

Protein Eng Des Sel. 2014 Aug;27(8):263-71. doi: 10.1093/protein/gzu028. Review.

5.

Structure-based engineering and comparison of novel split inteins for protein ligation.

Aranko AS, Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H.

Mol Biosyst. 2014 May;10(5):1023-34. doi: 10.1039/c4mb00021h.

PMID:
24574026
6.

Intermolecular domain swapping induces intein-mediated protein alternative splicing.

Aranko AS, Oeemig JS, Kajander T, Iwaï H.

Nat Chem Biol. 2013 Oct;9(10):616-22. doi: 10.1038/nchembio.1320. Epub 2013 Aug 25.

PMID:
23974115
7.

Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.

Aranko AS, Oeemig JS, Iwaï H.

FEBS J. 2013 Jul;280(14):3256-69. doi: 10.1111/febs.12307. Epub 2013 May 28.

8.

Protein trans-splicing as a protein ligation tool to study protein structure and function.

Aranko AS, Volkmann G.

Biomol Concepts. 2011 Jun 1;2(3):183-98. doi: 10.1515/bmc.2011.014.

PMID:
25962028
9.

Use of protein trans-splicing to produce active and segmentally (2)H, (15)N labeled mannuronan C5-epimerase AlgE4.

Buchinger E, Aachmann FL, Aranko AS, Valla S, Skjåk-Braek G, Iwaï H, Wimmer R.

Protein Sci. 2010 Aug;19(8):1534-43. doi: 10.1002/pro.432.

10.

Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro.

Muona M, Aranko AS, Raulinaitis V, Iwaï H.

Nat Protoc. 2010 Mar;5(3):574-87. doi: 10.1038/nprot.2009.240. Epub 2010 Mar 4.

PMID:
20203672
11.

Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein.

Busche AE, Aranko AS, Talebzadeh-Farooji M, Bernhard F, Dötsch V, Iwaï H.

Angew Chem Int Ed Engl. 2009;48(33):6128-31. doi: 10.1002/anie.200901488. No abstract available.

PMID:
19591176
12.

In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.

Aranko AS, Züger S, Buchinger E, Iwaï H.

PLoS One. 2009;4(4):e5185. doi: 10.1371/journal.pone.0005185. Epub 2009 Apr 13.

13.

Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification.

Oeemig JS, Aranko AS, Djupsjöbacka J, Heinämäki K, Iwaï H.

FEBS Lett. 2009 May 6;583(9):1451-6. doi: 10.1016/j.febslet.2009.03.058. Epub 2009 Apr 1.

14.

Segmental isotopic labelling of a multidomain protein by protein ligation by protein trans-splicing.

Muona M, Aranko AS, Iwai H.

Chembiochem. 2008 Dec 15;9(18):2958-61. doi: 10.1002/cbic.200800604. No abstract available.

PMID:
19031436

Supplemental Content

Loading ...
Support Center