Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Oncogenic Pathways and Loss of the Rab11 GTPase Synergize To Alter Metabolism in Drosophila.

Nie Y, Yu S, Li Q, Nirala NK, Amcheslavsky A, Edwards YJK, Shum PW, Jiang Z, Wang W, Zhang B, Gao N, Ip YT.

Genetics. 2019 Aug;212(4):1227-1239. doi: 10.1534/genetics.119.302137. Epub 2019 Jun 18.

PMID:
31213502
2.

Plasma Membrane Localization of Apoptotic Caspases for Non-apoptotic Functions.

Amcheslavsky A, Wang S, Fogarty CE, Lindblad JL, Fan Y, Bergmann A.

Dev Cell. 2018 May 21;45(4):450-464.e3. doi: 10.1016/j.devcel.2018.04.020.

3.

Extracellular Reactive Oxygen Species Drive Apoptosis-Induced Proliferation via Drosophila Macrophages.

Fogarty CE, Diwanji N, Lindblad JL, Tare M, Amcheslavsky A, Makhijani K, Br├╝ckner K, Fan Y, Bergmann A.

Curr Biol. 2016 Mar 7;26(5):575-84. doi: 10.1016/j.cub.2015.12.064. Epub 2016 Feb 18.

4.

Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx.

Dynes JL, Amcheslavsky A, Cahalan MD.

Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):440-5. doi: 10.1073/pnas.1523410113. Epub 2015 Dec 28.

5.

Bunched and Madm Function Downstream of Tuberous Sclerosis Complex to Regulate the Growth of Intestinal Stem Cells in Drosophila.

Nie Y, Li Q, Amcheslavsky A, Duhart JC, Veraksa A, Stocker H, Raftery LA, Ip YT.

Stem Cell Rev. 2015 Dec;11(6):813-25. doi: 10.1007/s12015-015-9617-5.

6.

Molecular biophysics of Orai store-operated Ca2+ channels.

Amcheslavsky A, Wood ML, Yeromin AV, Parker I, Freites JA, Tobias DJ, Cahalan MD.

Biophys J. 2015 Jan 20;108(2):237-46. doi: 10.1016/j.bpj.2014.11.3473. Review.

7.

The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila.

Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, McCollum D, Jiang J, Czech MP, Xu L, Ip YT.

Dev Cell. 2014 Nov 10;31(3):291-304. doi: 10.1016/j.devcel.2014.09.012. Epub 2014 Nov 10.

8.

Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila.

Amcheslavsky A, Song W, Li Q, Nie Y, Bragatto I, Ferrandon D, Perrimon N, Ip YT.

Cell Rep. 2014 Oct 9;9(1):32-39. doi: 10.1016/j.celrep.2014.08.052. Epub 2014 Sep 25.

9.

Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila.

Amcheslavsky A, Nie Y, Li Q, He F, Tsuda L, Markstein M, Ip YT.

Development. 2014 Jul;141(13):2621-32. doi: 10.1242/dev.106237.

10.

State-dependent block of Orai3 TM1 and TM3 cysteine mutants: insights into 2-APB activation.

Amcheslavsky A, Safrina O, Cahalan MD.

J Gen Physiol. 2014 May;143(5):621-31. doi: 10.1085/jgp.201411171. Epub 2014 Apr 14.

11.

Orai3 TM3 point mutation G158C alters kinetics of 2-APB-induced gating by disulfide bridge formation with TM2 C101.

Amcheslavsky A, Safrina O, Cahalan MD.

J Gen Physiol. 2013 Oct;142(4):405-12. doi: 10.1085/jgp.201311030.

12.

Be a good neighbor: organ-to-organ communication during the innate immune response.

Amcheslavsky A, Ip YT.

Cell Host Microbe. 2012 Apr 19;11(4):323-4. doi: 10.1016/j.chom.2012.04.003.

13.

Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states.

Demuro A, Penna A, Safrina O, Yeromin AV, Amcheslavsky A, Cahalan MD, Parker I.

Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17832-7. doi: 10.1073/pnas.1114814108. Epub 2011 Oct 10.

14.

Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91.

Zhang SL, Yeromin AV, Hu J, Amcheslavsky A, Zheng H, Cahalan MD.

Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17838-43. doi: 10.1073/pnas.1114821108. Epub 2011 Oct 10.

15.

Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells.

Amcheslavsky A, Ito N, Jiang J, Ip YT.

J Cell Biol. 2011 May 16;193(4):695-710. doi: 10.1083/jcb.201103018. Epub 2011 May 9.

16.

Tissue damage-induced intestinal stem cell division in Drosophila.

Amcheslavsky A, Jiang J, Ip YT.

Cell Stem Cell. 2009 Jan 9;4(1):49-61. doi: 10.1016/j.stem.2008.10.016.

17.

Toll-like receptor 9 ligand blocks osteoclast differentiation through induction of phosphatase.

Amcheslavsky A, Bar-Shavit Z.

J Bone Miner Res. 2007 Aug;22(8):1301-10.

18.

Interleukin (IL)-12 mediates the anti-osteoclastogenic activity of CpG-oligodeoxynucleotides.

Amcheslavsky A, Bar-Shavit Z.

J Cell Physiol. 2006 Apr;207(1):244-50.

PMID:
16402377
19.

Differential contribution of osteoclast- and osteoblast-lineage cells to CpG-oligodeoxynucleotide (CpG-ODN) modulation of osteoclastogenesis.

Amcheslavsky A, Hemmi H, Akira S, Bar-Shavit Z.

J Bone Miner Res. 2005 Sep;20(9):1692-9. Epub 2005 May 23.

20.

Organization of transcriptional regulatory machinery in osteoclast nuclei: compartmentalization of Runx1.

Saltman LH, Javed A, Ribadeneyra J, Hussain S, Young DW, Osdoby P, Amcheslavsky A, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Bar-Shavit Z.

J Cell Physiol. 2005 Sep;204(3):871-80.

PMID:
15828028
21.

Toll-like receptor 9 regulates tumor necrosis factor-alpha expression by different mechanisms. Implications for osteoclastogenesis.

Amcheslavsky A, Zou W, Bar-Shavit Z.

J Biol Chem. 2004 Dec 24;279(52):54039-45. Epub 2004 Oct 14.

22.

TNF-alpha expression is transcriptionally regulated by RANK ligand.

Zou W, Amcheslavsky A, Takeshita S, Drissi H, Bar-Shavit Z.

J Cell Physiol. 2005 Feb;202(2):371-8.

PMID:
15389596
23.

CpG oligodeoxynucleotides modulate the osteoclastogenic activity of osteoblasts via Toll-like receptor 9.

Zou W, Amcheslavsky A, Bar-Shavit Z.

J Biol Chem. 2003 May 9;278(19):16732-40. Epub 2003 Feb 28.

Supplemental Content

Loading ...
Support Center