Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 20

  • Filters activated: Field: Title Word. Clear all
1.

From structure to mechanism-understanding initiation of DNA replication.

Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C.

Genes Dev. 2017 Jun 1;31(11):1073-1088. doi: 10.1101/gad.298232.117. Review.

2.

Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1.

Yuan Z, Riera A, Bai L, Sun J, Nandi S, Spanos C, Chen ZA, Barbon M, Rappsilber J, Stillman B, Speck C, Li H.

Nat Struct Mol Biol. 2017 Mar;24(3):316-324. doi: 10.1038/nsmb.3372. Epub 2017 Feb 13.

3.

Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex.

Vega M, Riera A, Fernández-Cid A, Herrero P, Moreno F.

J Biol Chem. 2016 Apr 1;291(14):7267-85. doi: 10.1074/jbc.M115.711408. Epub 2016 Feb 10.

4.

A reconstituted system reveals how activating and inhibitory interactions control DDK dependent assembly of the eukaryotic replicative helicase.

Herrera MC, Tognetti S, Riera A, Zech J, Clarke P, Fernández-Cid A, Speck C.

Nucleic Acids Res. 2015 Dec 2;43(21):10238-50. doi: 10.1093/nar/gkv881. Epub 2015 Sep 3.

5.

Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication.

Chang F, Riera A, Evrin C, Sun J, Li H, Speck C, Weinreich M.

Elife. 2015 Aug 25;4. doi: 10.7554/eLife.05795.

6.

Opening the gate to DNA replication.

Riera A, Speck C.

Cell Cycle. 2015;14(1):6-8. doi: 10.4161/15384101.2014.987624. No abstract available.

7.

Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function.

Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H.

Genes Dev. 2014 Oct 15;28(20):2291-303. doi: 10.1101/gad.242313.114.

8.

Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.

Tognetti S, Riera A, Speck C.

Chromosoma. 2015 Mar;124(1):13-26. doi: 10.1007/s00412-014-0489-2. Epub 2014 Oct 12. Review.

9.

A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA.

Samel SA, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C.

Genes Dev. 2014 Aug 1;28(15):1653-66. doi: 10.1101/gad.242404.114.

10.

Helicase loading: how to build a MCM2-7 double-hexamer.

Riera A, Tognetti S, Speck C.

Semin Cell Dev Biol. 2014 Jun;30:104-9. doi: 10.1016/j.semcdb.2014.03.008. Epub 2014 Mar 14. Review.

PMID:
24637008
11.

The ORC/Cdc6/MCM2-7 complex facilitates MCM2-7 dimerization during prereplicative complex formation.

Evrin C, Fernández-Cid A, Riera A, Zech J, Clarke P, Herrera MC, Tognetti S, Lurz R, Speck C.

Nucleic Acids Res. 2014 Feb;42(4):2257-69. doi: 10.1093/nar/gkt1148. Epub 2013 Nov 14.

12.

Seeing is believing: the MCM2-7 helicase trapped in complex with its DNA loader.

Riera A, Li H, Speck C.

Cell Cycle. 2013 Sep 15;12(18):2917-8. doi: 10.4161/cc.26132. Epub 2013 Aug 21. No abstract available.

13.

Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA.

Sun J, Evrin C, Samel SA, Fernández-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H.

Nat Struct Mol Biol. 2013 Aug;20(8):944-51. doi: 10.1038/nsmb.2629. Epub 2013 Jul 14.

14.

The ORC/Cdc6/MCM2–7 complex, a new power player for regulated helicase loading.

Riera A, Fernández-Cid A, Speck C.

Cell Cycle. 2013 Jul 15;12(14):2155-6. No abstract available.

15.

An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly.

Fernández-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, Winkler C, Gardenal E, Uhle S, Speck C.

Mol Cell. 2013 May 23;50(4):577-88. doi: 10.1016/j.molcel.2013.03.026. Epub 2013 Apr 18.

16.

In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2-7 hexamer dimerization.

Evrin C, Fernández-Cid A, Zech J, Herrera MC, Riera A, Clarke P, Brill S, Lurz R, Speck C.

Nucleic Acids Res. 2013 Mar 1;41(5):3162-72. doi: 10.1093/nar/gkt043. Epub 2013 Feb 1.

17.

Glucose levels regulate the nucleo-mitochondrial distribution of Mig2.

Fernández-Cid A, Riera A, Herrero P, Moreno F.

Mitochondrion. 2012 May;12(3):370-80. doi: 10.1016/j.mito.2012.02.001. Epub 2012 Feb 12.

PMID:
22353369
18.

Human pancreatic beta-cell glucokinase: subcellular localization and glucose repression signalling function in the yeast cell.

Riera A, Ahuatzi D, Herrero P, Garcia-Gimeno MA, Sanz P, Moreno F.

Biochem J. 2008 Oct 15;415(2):233-9. doi: 10.1042/BJ20080797.

19.

Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution.

Ahuatzi D, Riera A, Peláez R, Herrero P, Moreno F.

J Biol Chem. 2007 Feb 16;282(7):4485-93. Epub 2006 Dec 18.

20.

A glucose response element from the S. cerevisiae hexose transporter HXT1 gene is sensitive to glucose in human fibroblasts.

Ferrer-Martínez A, Riera A, Jiménez-Chillarón JC, Herrero P, Moreno F, Gómez-Foix AM.

J Mol Biol. 2004 May 7;338(4):657-67.

PMID:
15099735

Supplemental Content

Loading ...
Support Center