Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 295

1.

GLYX-13 Produces Rapid Antidepressant Responses with Key Synaptic and Behavioral Effects Distinct from Ketamine.

Liu RJ, Duman C, Kato T, Hare B, Lopresto D, Bang E, Burgdorf J, Moskal J, Taylor J, Aghajanian G, Duman RS.

Neuropsychopharmacology. 2017 May;42(6):1231-1242. doi: 10.1038/npp.2016.202. Epub 2016 Sep 16.

2.

Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.

Duman RS, Aghajanian GK, Sanacora G, Krystal JH.

Nat Med. 2016 Mar;22(3):238-49. doi: 10.1038/nm.4050.

3.

Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions.

Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, Aghajanian GK, Duman RS.

Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8106-11. doi: 10.1073/pnas.1414728112. Epub 2015 Jun 8.

4.

Ketamine Strengthens CRF-Activated Amygdala Inputs to Basal Dendrites in mPFC Layer V Pyramidal Cells in the Prelimbic but not Infralimbic Subregion, A Key Suppressor of Stress Responses.

Liu RJ, Ota KT, Dutheil S, Duman RS, Aghajanian GK.

Neuropsychopharmacology. 2015 Aug;40(9):2066-75. doi: 10.1038/npp.2015.70. Epub 2015 Mar 11.

5.

REDD1 is essential for stress-induced synaptic loss and depressive behavior.

Ota KT, Liu RJ, Voleti B, Maldonado-Aviles JG, Duric V, Iwata M, Dutheil S, Duman C, Boikess S, Lewis DA, Stockmeier CA, DiLeone RJ, Rex C, Aghajanian GK, Duman RS.

Nat Med. 2014 May;20(5):531-5. doi: 10.1038/nm.3513. Epub 2014 Apr 13.

6.

Medial prefrontal D1 dopamine neurons control food intake.

Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, Grimaldi DM, Sarhan M, Guarnieri DJ, Deisseroth K, Aghajanian GK, DiLeone RJ.

Nat Neurosci. 2014 Feb;17(2):248-53. doi: 10.1038/nn.3625. Epub 2014 Jan 19.

7.

Neurobiology of rapid acting antidepressants: role of BDNF and GSK-3β.

Duman RS, Aghajanian GK.

Neuropsychopharmacology. 2014 Jan;39(1):233. doi: 10.1038/npp.2013.217. No abstract available.

8.

Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses.

Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, Sanacora G, Eid T, Aghajanian G, Duman RS.

Biol Psychiatry. 2013 Nov 15;74(10):742-9. doi: 10.1016/j.biopsych.2013.04.025. Epub 2013 Jun 14.

9.

GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine.

Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK.

Neuropsychopharmacology. 2013 Oct;38(11):2268-77. doi: 10.1038/npp.2013.128. Epub 2013 May 17.

10.

Synaptic dysfunction in depression: potential therapeutic targets.

Duman RS, Aghajanian GK.

Science. 2012 Oct 5;338(6103):68-72. doi: 10.1126/science.1222939. Review.

11.

Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex.

Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK.

Biol Psychiatry. 2012 Jun 1;71(11):996-1005. doi: 10.1016/j.biopsych.2011.09.030. Epub 2011 Oct 29.

12.

Signaling pathways underlying the rapid antidepressant actions of ketamine.

Duman RS, Li N, Liu RJ, Duric V, Aghajanian G.

Neuropharmacology. 2012 Jan;62(1):35-41. doi: 10.1016/j.neuropharm.2011.08.044. Epub 2011 Sep 2. Review.

13.

Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.

Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS.

Biol Psychiatry. 2011 Apr 15;69(8):754-61. doi: 10.1016/j.biopsych.2010.12.015. Epub 2011 Feb 3.

14.

mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.

Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS.

Science. 2010 Aug 20;329(5994):959-64. doi: 10.1126/science.1190287.

15.

Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone.

Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ.

J Neurosci. 2010 Jun 16;30(24):8263-73. doi: 10.1523/JNEUROSCI.5858-09.2010.

16.

Modeling "psychosis" in vitro by inducing disordered neuronal network activity in cortical brain slices.

Aghajanian GK.

Psychopharmacology (Berl). 2009 Nov;206(4):575-85. doi: 10.1007/s00213-009-1484-9. Epub 2009 Feb 25. Review.

17.

Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies.

Zachariou V, Liu R, LaPlant Q, Xiao G, Renthal W, Chan GC, Storm DR, Aghajanian G, Nestler EJ.

Biol Psychiatry. 2008 Jun 1;63(11):1013-21. doi: 10.1016/j.biopsych.2007.11.021. Epub 2008 Jan 28.

18.

Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy.

Liu RJ, Aghajanian GK.

Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):359-64. doi: 10.1073/pnas.0706679105. Epub 2008 Jan 2.

19.

Schizophrenia, hypocretin (orexin), and the thalamocortical activating system.

Lambe EK, Liu RJ, Aghajanian GK.

Schizophr Bull. 2007 Nov;33(6):1284-90. Epub 2007 Jul 26. Review.

20.
21.

Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice.

Weisstaub NV, Zhou M, Lira A, Lambe E, González-Maeso J, Hornung JP, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon SC, Hen R, Gingrich JA.

Science. 2006 Jul 28;313(5786):536-40.

22.

Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors.

Han MH, Bolaños CA, Green TA, Olson VG, Neve RL, Liu RJ, Aghajanian GK, Nestler EJ.

J Neurosci. 2006 Apr 26;26(17):4624-9.

23.

Severe deficits in 5-HT2A -mediated neurotransmission in BDNF conditional mutant mice.

Rios M, Lambe EK, Liu R, Teillon S, Liu J, Akbarian S, Roffler-Tarlov S, Jaenisch R, Aghajanian GK.

J Neurobiol. 2006 Mar;66(4):408-20.

24.

Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors.

Lambe EK, Aghajanian GK.

Neuropsychopharmacology. 2006 Aug;31(8):1682-9. Epub 2005 Nov 2.

25.

Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat.

Lambe EK, Olausson P, Horst NK, Taylor JR, Aghajanian GK.

J Neurosci. 2005 May 25;25(21):5225-9.

26.
28.

Regulation of RGS proteins by chronic morphine in rat locus coeruleus.

Gold SJ, Han MH, Herman AE, Ni YG, Pudiak CM, Aghajanian GK, Liu RJ, Potts BW, Mumby SM, Nestler EJ.

Eur J Neurosci. 2003 Mar;17(5):971-80.

PMID:
12653973
29.

Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex.

Lambe EK, Picciotto MR, Aghajanian GK.

Neuropsychopharmacology. 2003 Feb;28(2):216-25.

30.
31.

Neurokinins activate local glutamatergic inputs to serotonergic neurons of the dorsal raphe nucleus.

Liu R, Ding Y, Aghajanian GK.

Neuropsychopharmacology. 2002 Sep;27(3):329-40.

32.

Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons.

Akbarian S, Rios M, Liu RJ, Gold SJ, Fong HF, Zeiler S, Coppola V, Tessarollo L, Jones KR, Nestler EJ, Aghajanian GK, Jaenisch R.

J Neurosci. 2002 May 15;22(10):4153-62.

33.

Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus.

van den Pol AN, Ghosh PK, Liu RJ, Li Y, Aghajanian GK, Gao XB.

J Physiol. 2002 May 15;541(Pt 1):169-85.

35.

Neurotrophin-3 modulates noradrenergic neuron function and opiate withdrawal.

Akbarian S, Bates B, Liu RJ, Skirboll SL, Pejchal T, Coppola V, Sun LD, Fan G, Kucera J, Wilson MA, Tessarollo L, Kosofsky BE, Taylor JR, Bothwell M, Nestler EJ, Aghajanian GK, Jaenisch R.

Mol Psychiatry. 2001 Sep;6(5):593-604.

37.

Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat.

Lambe EK, Goldman-Rakic PS, Aghajanian GK.

Cereb Cortex. 2000 Oct;10(10):974-80.

PMID:
11007548
38.
39.

Serotonin model of schizophrenia: emerging role of glutamate mechanisms.

Aghajanian GK, Marek GJ.

Brain Res Brain Res Rev. 2000 Mar;31(2-3):302-12. Review.

PMID:
10719157
40.

Dual control of dorsal raphe serotonergic neurons by GABA(B) receptors. Electrophysiological and microdialysis studies.

Abellán MT, Jolas T, Aghajanian GK, Artigas F.

Synapse. 2000 Apr;36(1):21-34.

PMID:
10700023
42.

Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex.

Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK.

J Pharmacol Exp Ther. 2000 Jan;292(1):76-87.

PMID:
10604933
43.

Molecular control of locus coeruleus neurotransmission.

Nestler EJ, Alreja M, Aghajanian GK.

Biol Psychiatry. 1999 Nov 1;46(9):1131-9. Review.

PMID:
10560020
44.

Caveat emptor: researcher beware.

Lieberman JA, Aghajanian GK.

Neuropsychopharmacology. 1999 Oct;21(4):471-3. No abstract available.

45.

Serotonin and hallucinogens.

Aghajanian GK, Marek GJ.

Neuropsychopharmacology. 1999 Aug;21(2 Suppl):16S-23S. Review.

49.

The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis.

Marek GJ, Aghajanian GK.

Biol Psychiatry. 1998 Dec 1;44(11):1118-27. Review.

PMID:
9836015
50.

Indoleamine and the phenethylamine hallucinogens: mechanisms of psychotomimetic action.

Marek GJ, Aghajanian GK.

Drug Alcohol Depend. 1998 Jun-Jul;51(1-2):189-98. Review. No abstract available.

PMID:
9716940

Supplemental Content

Loading ...
Support Center