Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival.

Pike LR, Singleton DC, Buffa F, Abramczyk O, Phadwal K, Li JL, Simon AK, Murray JT, Harris AL.

Biochem J. 2013 Jan 15;449(2):389-400. doi: 10.1042/BJ20120972.

PMID:
23078367
2.

Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells.

Yuen HF, Abramczyk O, Montgomery G, Chan KK, Huang YH, Sasazuki T, Shirasawa S, Gopesh S, Chan KW, Fennell D, Janne P, El-Tanani M, Murray JT.

Biosci Rep. 2012 Aug;32(4):413-22. doi: 10.1042/BSR20120050.

3.

Investigating the kinetic mechanism of inhibition of elongation factor 2 kinase by NH125: evidence of a common in vitro artifact.

Devkota AK, Tavares CD, Warthaka M, Abramczyk O, Marshall KD, Kaoud TS, Gorgulu K, Ozpolat B, Dalby KN.

Biochemistry. 2012 Mar 13;51(10):2100-12. doi: 10.1021/bi201787p. Epub 2012 Mar 5.

4.

Calcium/calmodulin stimulates the autophosphorylation of elongation factor 2 kinase on Thr-348 and Ser-500 to regulate its activity and calcium dependence.

Tavares CD, O'Brien JP, Abramczyk O, Devkota AK, Shores KS, Ferguson SB, Kaoud TS, Warthaka M, Marshall KD, Keller KM, Zhang Y, Brodbelt JS, Ozpolat B, Dalby KN.

Biochemistry. 2012 Mar 20;51(11):2232-45. doi: 10.1021/bi201788e. Epub 2012 Mar 6.

5.

Phosphorylation of NDRG1 is temporally and spatially controlled during the cell cycle.

McCaig C, Potter L, Abramczyk O, Murray JT.

Biochem Biophys Res Commun. 2011 Jul 29;411(2):227-34. doi: 10.1016/j.bbrc.2011.06.092. Epub 2011 Jun 17.

PMID:
21708134
6.

Purification and characterization of tagless recombinant human elongation factor 2 kinase (eEF-2K) expressed in Escherichia coli.

Abramczyk O, Tavares CD, Devkota AK, Ryazanov AG, Turk BE, Riggs AF, Ozpolat B, Dalby KN.

Protein Expr Purif. 2011 Oct;79(2):237-44. doi: 10.1016/j.pep.2011.05.005. Epub 2011 May 14. Erratum in: Protein Expr Purif. 2012 Oct;85(2):250.

7.

Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15.

Kaoud TS, Devkota AK, Harris R, Rana MS, Abramczyk O, Warthaka M, Lee S, Girvin ME, Riggs AF, Dalby KN.

Biochemistry. 2011 May 31;50(21):4568-78. doi: 10.1021/bi200202y. Epub 2011 May 4.

8.

Solution NMR insights into docking interactions involving inactive ERK2.

Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R.

Biochemistry. 2011 May 10;50(18):3660-72. doi: 10.1021/bi2000559. Epub 2011 Apr 19.

9.

The anti-apoptotic protein PEA-15 is a tight binding inhibitor of ERK1 and ERK2, which blocks docking interactions at the D-recruitment site.

Callaway K, Abramczyk O, Martin L, Dalby KN.

Biochemistry. 2007 Aug 14;46(32):9187-98. Epub 2007 Jul 21.

PMID:
17658892
10.

Expanding the repertoire of an ERK2 recruitment site: cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding.

Abramczyk O, Rainey MA, Barnes R, Martin L, Dalby KN.

Biochemistry. 2007 Aug 14;46(32):9174-86. Epub 2007 Jul 21.

11.

Properties and regulation of a transiently assembled ERK2.Ets-1 signaling complex.

Callaway KA, Rainey MA, Riggs AF, Abramczyk O, Dalby KN.

Biochemistry. 2006 Nov 21;45(46):13719-33.

PMID:
17105191
12.

TBBz but not TBBt discriminates between two molecular forms of CK2 in vivo and its implications.

Zień P, Abramczyk O, Domańska K, Bretner M, Szyszka R.

Biochem Biophys Res Commun. 2003 Dec 19;312(3):623-8.

PMID:
14680810
13.

The protein kinase 60S is a free catalytic CK2alpha' subunit and forms an inactive complex with superoxide dismutase SOD1.

Abramczyk O, Zień P, Zieliński R, Pilecki M, Hellman U, Szyszka R.

Biochem Biophys Res Commun. 2003 Jul 18;307(1):31-40.

PMID:
12849977

Supplemental Content

Loading ...
Support Center