Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

Molecular insight into a new low-affinity xylan binding module from the xylanolytic gut symbiont Roseburia intestinalis.

Leth ML, Ejby M, Madland E, Kitaoku Y, Slotboom DJ, Guskov A, Aachmann FL, Abou Hachem M.

FEBS J. 2019 Nov 6. doi: 10.1111/febs.15117. [Epub ahead of print]

PMID:
31693302
2.

Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis.

Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, Urashima T, Xiao JZ, Kitaoka M, Fukiya S, Yokota A, Lo Leggio L, Abou Hachem M, Katayama T.

Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug.

3.

A novel starch-binding laccase from the wheat pathogen Zymoseptoria tritici highlights the functional diversity of ascomycete laccases.

Haddad Momeni M, Bollella P, Ortiz R, Thormann E, Gorton L, Abou Hachem M.

BMC Biotechnol. 2019 Aug 19;19(1):61. doi: 10.1186/s12896-019-0552-4.

4.

Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in Bifidobacterium animalis subsp. lactis.

Theilmann MC, Fredslund F, Svensson B, Lo Leggio L, Abou Hachem M.

J Biol Chem. 2019 Aug 2;294(31):11701-11711. doi: 10.1074/jbc.RA119.008843. Epub 2019 Jun 11.

5.

Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles.

Ejby M, Guskov A, Pichler MJ, Zanten GC, Schoof E, Saburi W, Slotboom DJ, Abou Hachem M.

Mol Microbiol. 2019 Jul;112(1):114-130. doi: 10.1111/mmi.14257. Epub 2019 Apr 25.

PMID:
30947380
6.

Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut.

Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR, Aachmann FL, Westereng B, Abou Hachem M.

Nat Microbiol. 2018 May;3(5):570-580. doi: 10.1038/s41564-018-0132-8. Epub 2018 Apr 2.

PMID:
29610517
7.

Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals.

Theilmann MC, Goh YJ, Nielsen KF, Klaenhammer TR, Barrangou R, Abou Hachem M.

mBio. 2017 Nov 21;8(6). pii: e01421-17. doi: 10.1128/mBio.01421-17.

8.

Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42.

Viborg AH, Katayama T, Arakawa T, Abou Hachem M, Lo Leggio L, Kitaoka M, Svensson B, Fushinobu S.

J Biol Chem. 2017 Dec 22;292(51):21092-21101. doi: 10.1074/jbc.M117.792598. Epub 2017 Oct 23.

9.

Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases.

Berrin JG, Rosso MN, Abou Hachem M.

Carbohydr Res. 2017 Aug 7;448:155-160. doi: 10.1016/j.carres.2017.05.010. Epub 2017 May 17. Review.

PMID:
28535872
10.

Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM.

Celebioglu HU, Olesen SV, Prehn K, Lahtinen SJ, Brix S, Abou Hachem M, Svensson B.

J Proteomics. 2017 Jun 23;163:102-110. doi: 10.1016/j.jprot.2017.05.015. Epub 2017 May 19.

PMID:
28533178
11.

An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus.

Møller MS, Goh YJ, Rasmussen KB, Cypryk W, Celebioglu HU, Klaenhammer TR, Svensson B, Abou Hachem M.

Appl Environ Microbiol. 2017 May 31;83(12). pii: e00402-17. doi: 10.1128/AEM.00402-17. Print 2017 Jun 15.

12.

Structural and Mechanical Properties of Thin Films of Bovine Submaxillary Mucin versus Porcine Gastric Mucin on a Hydrophobic Surface in Aqueous Solutions.

Madsen JB, Sotres J, Pakkanen KI, Efler P, Svensson B, Abou Hachem M, Arnebrant T, Lee S.

Langmuir. 2016 Sep 27;32(38):9687-96. doi: 10.1021/acs.langmuir.6b02057. Epub 2016 Sep 13.

PMID:
27597630
13.

Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

Nekiunaite L, Arntzen MØ, Svensson B, Vaaje-Kolstad G, Abou Hachem M.

Biotechnol Biofuels. 2016 Sep 1;9(1):187. doi: 10.1186/s13068-016-0604-0. eCollection 2016.

14.

Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

Cockburn D, Wilkens C, Dilokpimol A, Nakai H, Lewińska A, Abou Hachem M, Svensson B.

PLoS One. 2016 Aug 9;11(8):e0160112. doi: 10.1371/journal.pone.0160112. eCollection 2016.

15.

An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates.

Ejby M, Fredslund F, Andersen JM, Vujičić Žagar A, Henriksen JR, Andersen TL, Svensson B, Slotboom DJ, Abou Hachem M.

J Biol Chem. 2016 Sep 16;291(38):20220-31. doi: 10.1074/jbc.M116.746529. Epub 2016 Aug 8.

16.

Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases.

Nekiunaite L, Isaksen T, Vaaje-Kolstad G, Abou Hachem M.

FEBS Lett. 2016 Aug;590(16):2737-47. doi: 10.1002/1873-3468.12293. Epub 2016 Jul 26.

17.

Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, Thorsen K, Schmidt B, O'Flaherty S, Abou Hachem M, Lahtinen SJ, Jacobsen S, Klaenhammer TR, Brix S, Mølhave K, Svensson B.

Proteomics. 2016 May;16(9):1361-75. doi: 10.1002/pmic.201500212. Epub 2016 Apr 13.

PMID:
26959526
18.

Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose.

Wilkens C, Auger KD, Anderson NT, Meekins DA, Raththagala M, Abou Hachem M, Payne CM, Gentry MS, Svensson B.

FEBS Lett. 2016 Jan;590(1):118-28. doi: 10.1002/1873-3468.12027. Epub 2016 Jan 4.

19.

The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes.

Morrill J, Kulcinskaja E, Sulewska AM, Lahtinen S, Stålbrand H, Svensson B, Abou Hachem M.

BMC Biochem. 2015 Nov 11;16:26. doi: 10.1186/s12858-015-0055-4.

20.

Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.

Lai D, Pičmanová M, Abou Hachem M, Motawia MS, Olsen CE, Møller BL, Rook F, Takos AM.

Plant Mol Biol. 2015 Sep;89(1-2):21-34. doi: 10.1007/s11103-015-0348-4. Epub 2015 Aug 7.

PMID:
26249044
21.

Proteolytic Degradation of Bovine Submaxillary Mucin (BSM) and Its Impact on Adsorption and Lubrication at a Hydrophobic Surface.

Madsen JB, Svensson B, Abou Hachem M, Lee S.

Langmuir. 2015 Aug 4;31(30):8303-9. doi: 10.1021/acs.langmuir.5b01281. Epub 2015 Jul 20.

PMID:
26153254
22.

Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

Møller MS, Windahl MS, Sim L, Bøjstrup M, Abou Hachem M, Hindsgaul O, Palcic M, Svensson B, Henriksen A.

J Mol Biol. 2015 Mar 27;427(6 Pt B):1263-1277. doi: 10.1016/j.jmb.2014.12.019. Epub 2015 Jan 3.

PMID:
25562209
23.

A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium.

Viborg AH, Fredslund F, Katayama T, Nielsen SK, Svensson B, Kitaoka M, Lo Leggio L, Abou Hachem M.

Mol Microbiol. 2014 Oct 7. doi: 10.1111/mmi.12815. [Epub ahead of print]

24.

The evolutionary appearance of non-cyanogenic hydroxynitrile glucosides in the Lotus genus is accompanied by the substrate specialization of paralogous β-glucosidases resulting from a crucial amino acid substitution.

Lai D, Abou Hachem M, Robson F, Olsen CE, Wang TL, Møller BL, Takos AM, Rook F.

Plant J. 2014 Jul;79(2):299-311. doi: 10.1111/tpj.12561. Epub 2014 Jun 23.

25.

Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04.

Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou Hachem M.

Mol Microbiol. 2013 Dec;90(5):1100-12. doi: 10.1111/mmi.12419. Epub 2013 Oct 31.

26.

Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.

Viborg AH, Katayama T, Abou Hachem M, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M.

Glycobiology. 2014 Feb;24(2):208-16. doi: 10.1093/glycob/cwt104. Epub 2013 Nov 23.

PMID:
24270321
27.

Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase.

Seung D, Thalmann M, Sparla F, Abou Hachem M, Lee SK, Issakidis-Bourguet E, Svensson B, Zeeman SC, Santelia D.

J Biol Chem. 2013 Nov 22;288(47):33620-33. doi: 10.1074/jbc.M113.514794. Epub 2013 Oct 2.

28.

Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces.

Sauer J, Abou Hachem M, Svensson B, Jensen KJ, Thygesen MB.

Carbohydr Res. 2013 Jun 28;375:21-8. doi: 10.1016/j.carres.2013.04.012. Epub 2013 Apr 20.

PMID:
23680647
29.

Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04.

Andersen JM, Barrangou R, Abou Hachem M, Lahtinen SJ, Goh YJ, Svensson B, Klaenhammer TR.

BMC Genomics. 2013 May 10;14:312. doi: 10.1186/1471-2164-14-312.

30.

Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21.

Møller MS, Abou Hachem M, Svensson B, Henriksen A.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Sep 1;68(Pt 9):1008-12. doi: 10.1107/S1744309112031004. Epub 2012 Aug 29.

31.

Degradation of the starch components amylopectin and amylose by barley α-amylase 1: role of surface binding site 2.

Nielsen JW, Kramhøft B, Bozonnet S, Abou Hachem M, Stipp SL, Svensson B, Willemoës M.

Arch Biochem Biophys. 2012 Dec 1;528(1):1-6. doi: 10.1016/j.abb.2012.08.005. Epub 2012 Aug 17.

PMID:
22902860
32.

Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM.

Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JC, Lo Leggio L, Svensson B, Abou Hachem M.

J Bacteriol. 2012 Aug;194(16):4249-59. doi: 10.1128/JB.00622-12. Epub 2012 Jun 8.

33.

Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus.

Andersen JM, Barrangou R, Abou Hachem M, Lahtinen S, Goh YJ, Svensson B, Klaenhammer TR.

Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17785-90. doi: 10.1073/pnas.1114152108. Epub 2011 Oct 17.

34.

Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase.

Cuyvers S, Dornez E, Abou Hachem M, Svensson B, Hothorn M, Chory J, Delcour JA, Courtin CM.

Anal Biochem. 2012 Jan 1;420(1):90-2. doi: 10.1016/j.ab.2011.09.005. Epub 2011 Sep 10.

35.

Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity.

Dilokpimol A, Nakai H, Gotfredsen CH, Baumann MJ, Nakai N, Abou Hachem M, Svensson B.

Biochim Biophys Acta. 2011 Dec;1814(12):1720-9. doi: 10.1016/j.bbapap.2011.08.003. Epub 2011 Aug 6.

PMID:
21867780
36.

Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism.

Glaring MA, Baumann MJ, Abou Hachem M, Nakai H, Nakai N, Santelia D, Sigurskjold BW, Zeeman SC, Blennow A, Svensson B.

FEBS J. 2011 Apr;278(7):1175-85. doi: 10.1111/j.1742-4658.2011.08043.x. Epub 2011 Mar 1.

37.

Crystal structure of an essential enzyme in seed starch degradation: barley limit dextrinase in complex with cyclodextrins.

Vester-Christensen MB, Abou Hachem M, Svensson B, Henriksen A.

J Mol Biol. 2010 Nov 12;403(5):739-50. doi: 10.1016/j.jmb.2010.09.031. Epub 2010 Sep 21.

PMID:
20863834
38.

Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase.

Nakai H, Petersen BO, Westphal Y, Dilokpimol A, Abou Hachem M, Duus JØ, Schols HA, Svensson B.

Protein Eng Des Sel. 2010 Oct;23(10):781-7. doi: 10.1093/protein/gzq055. Epub 2010 Aug 16.

PMID:
20713411
39.

Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.

Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, Motawia MS, Olsen CE, Wang TL, Martin C, Rook F.

Plant Cell. 2010 May;22(5):1605-19. doi: 10.1105/tpc.109.073502. Epub 2010 May 7.

40.

Efficient one-pot enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase.

Nakai H, Dilokpimol A, Abou Hachem M, Svensson B.

Carbohydr Res. 2010 May 27;345(8):1061-4. doi: 10.1016/j.carres.2010.03.021. Epub 2010 Mar 20.

PMID:
20392438
41.

The carbohydrate-binding module family 20--diversity, structure, and function.

Christiansen C, Abou Hachem M, Janecek S, Viksø-Nielsen A, Blennow A, Svensson B.

FEBS J. 2009 Sep;276(18):5006-29. doi: 10.1111/j.1742-4658.2009.07221.x. Epub 2009 Aug 13. Review.

42.

Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.

Nielsen MM, Bozonnet S, Seo ES, Mótyán JA, Andersen JM, Dilokpimol A, Abou Hachem M, Gyémánt G, Naested H, Kandra L, Sigurskjold BW, Svensson B.

Biochemistry. 2009 Aug 18;48(32):7686-97. doi: 10.1021/bi900795a.

PMID:
19606835
43.

Mutational analysis of target enzyme recognition of the beta-trefoil fold barley alpha-amylase/subtilisin inhibitor.

Bønsager BC, Nielsen PK, Abou Hachem M, Fukuda K, Praetorius-Ibba M, Svensson B.

J Biol Chem. 2005 Apr 15;280(15):14855-64. Epub 2005 Jan 18.

44.

Probing the stability of the modular family 10 xylanase from Rhodothermus marinus.

Abou-Hachem M, Olsson F, Nordberg Karlsson E.

Extremophiles. 2003 Dec;7(6):483-91. Epub 2003 Aug 26.

PMID:
12942350
45.

Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus.

Abou-Hachem M, Karlsson EN, Simpson PJ, Linse S, Sellers P, Williamson MP, Jamieson SJ, Gilbert HJ, Bolam DN, Holst O.

Biochemistry. 2002 May 7;41(18):5720-9.

PMID:
11980476
46.

The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase.

Simpson PJ, Jamieson SJ, Abou-Hachem M, Karlsson EN, Gilbert HJ, Holst O, Williamson MP.

Biochemistry. 2002 May 7;41(18):5712-9.

PMID:
11980475
47.

Virtually complete 1H, 13C and 15N resonance assignments of the second family 4 xylan binding module of Rhodothermus marinus xylanase 10A.

Jamieson SJ, Williamson MP, Abou-Hachem M, Nordberg KE, Simpson PJ.

J Biomol NMR. 2002 Feb;22(2):187-8. No abstract available.

PMID:
11883782
48.

Rhodothermus marinus: a thermophilic bacterium producing dimeric and hexameric citrate synthase isoenzymes.

Nordberg KE, Abou-Hachem M, Holst O, Danson MJ, Hough DW.

Extremophiles. 2002 Feb;6(1):51-6.

PMID:
11878562
49.

Deletion of a cytotoxic, N-terminal putatitive signal peptide results in a significant increase in production yields in Escherichia coli and improved specific activity of Cel12A from Rhodothermus marinus.

Wicher KB, Abou-Hachem M, Halldórsdóttir S, Thorbjarnadóttir SH, Eggertsson G, Hreggvidsson GO, Nordberg Karlsson E, Holst O.

Appl Microbiol Biotechnol. 2001 May;55(5):578-84.

PMID:
11414324
50.

Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies.

Abou Hachem M, Nordberg Karlsson E, Bartonek-Roxâ E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O.

Biochem J. 2000 Jan 1;345 Pt 1:53-60.

Supplemental Content

Loading ...
Support Center