Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 158

1.

Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores.

Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH, Turner NJ, Armstrong FA.

Angew Chem Int Ed Engl. 2019 Apr 1;58(15):4948-4952. doi: 10.1002/anie.201814370. Epub 2019 Feb 14.

2.

The value of enzymes in solar fuels research - efficient electrocatalysts through evolution.

Evans RM, Siritanaratkul B, Megarity CF, Pandey K, Esterle TF, Badiani S, Armstrong FA.

Chem Soc Rev. 2019 Apr 1;48(7):2039-2052. doi: 10.1039/c8cs00546j. Review.

PMID:
30426997
3.

Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O2-Tolerant [NiFe]-Hydrogenase.

Evans RM, Ash PA, Beaton SE, Brooke EJ, Vincent KA, Carr SB, Armstrong FA.

J Am Chem Soc. 2018 Aug 15;140(32):10208-10220. doi: 10.1021/jacs.8b04798. Epub 2018 Aug 2.

4.

X-ray structural, functional and computational studies of the O2-sensitive E. coli hydrogenase-1 C19G variant reveal an unusual [4Fe-4S] cluster.

Volbeda A, Mouesca JM, Darnault C, Roessler MM, Parkin A, Armstrong FA, Fontecilla-Camps JC.

Chem Commun (Camb). 2018 Jun 26;54(52):7175-7178. doi: 10.1039/c8cc02896f.

PMID:
29888350
5.

Protein Film Electrochemistry of Iron-Sulfur Enzymes.

Armstrong FA, Evans RM, Megarity CF.

Methods Enzymol. 2018;599:387-407. doi: 10.1016/bs.mie.2017.11.001. Epub 2017 Dec 16.

PMID:
29746247
6.

The structure of hydrogenase-2 from Escherichia coli: implications for H2-driven proton pumping.

Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB.

Biochem J. 2018 Apr 16;475(7):1353-1370. doi: 10.1042/BCJ20180053.

7.

A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

Wan L, Megarity CF, Siritanaratkul B, Armstrong FA.

Chem Commun (Camb). 2018 Jan 23;54(8):972-975. doi: 10.1039/c7cc08859k.

PMID:
29319070
8.

The radical-SAM enzyme Viperin catalyzes reductive addition of a 5'-deoxyadenosyl radical to UDP-glucose in vitro.

Honarmand Ebrahimi K, Carr SB, McCullagh J, Wickens J, Rees NH, Cantley J, Armstrong FA.

FEBS Lett. 2017 Aug;591(16):2394-2405. doi: 10.1002/1873-3468.12769. Epub 2017 Aug 15.

9.

Transfer of photosynthetic NADP+/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis.

Siritanaratkul B, Megarity CF, Roberts TG, Samuels TOM, Winkler M, Warner JH, Happe T, Armstrong FA.

Chem Sci. 2017 Jun 1;8(6):4579-4586. doi: 10.1039/c7sc00850c. Epub 2017 May 5.

10.

Generating single metalloprotein crystals in well-defined redox states: electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal.

Ash PA, Carr SB, Reeve HA, Skorupskaitė A, Rowbotham JS, Shutt R, Frogley MD, Evans RM, Cinque G, Armstrong FA, Vincent KA.

Chem Commun (Camb). 2017 May 30;53(43):5858-5861. doi: 10.1039/c7cc02591b.

11.

Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases.

Pandey K, Islam ST, Happe T, Armstrong FA.

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3843-3848. doi: 10.1073/pnas.1619961114. Epub 2017 Mar 27.

12.

Importance of the Active Site "Canopy" Residues in an O2-Tolerant [NiFe]-Hydrogenase.

Brooke EJ, Evans RM, Islam ST, Roberts GM, Wehlin SA, Carr SB, Phillips SE, Armstrong FA.

Biochemistry. 2017 Jan 10;56(1):132-142. doi: 10.1021/acs.biochem.6b00868. Epub 2016 Dec 21.

PMID:
28001048
13.

Electrochemical Investigations of the Mechanism of Assembly of the Active-Site H-Cluster of [FeFe]-Hydrogenases.

Megarity CF, Esselborn J, Hexter SV, Wittkamp F, Apfel UP, Happe T, Armstrong FA.

J Am Chem Soc. 2016 Nov 23;138(46):15227-15233. Epub 2016 Nov 14.

PMID:
27776209
14.

Hydrogen activation by [NiFe]-hydrogenases.

Carr SB, Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Armstrong FA, Phillips SE.

Biochem Soc Trans. 2016 Jun 15;44(3):863-8. doi: 10.1042/BST20160031. Review.

PMID:
27284053
15.

Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.

Armstrong FA, Evans RM, Hexter SV, Murphy BJ, Roessler MM, Wulff P.

Acc Chem Res. 2016 May 17;49(5):884-92. doi: 10.1021/acs.accounts.6b00027. Epub 2016 Apr 22. Review.

PMID:
27104487
16.

How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure.

Wulff P, Thomas C, Sargent F, Armstrong FA.

J Biol Inorg Chem. 2016 Mar;21(1):121-34. doi: 10.1007/s00775-015-1327-6. Epub 2016 Feb 9.

17.

Mechanism of hydrogen activation by [NiFe] hydrogenases.

Evans RM, Brooke EJ, Wehlin SA, Nomerotskaia E, Sargent F, Carr SB, Phillips SE, Armstrong FA.

Nat Chem Biol. 2016 Jan;12(1):46-50. doi: 10.1038/nchembio.1976. Epub 2015 Nov 30.

PMID:
26619250
18.

Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon Monoxide Dehydrogenase.

Wang VC, Islam ST, Can M, Ragsdale SW, Armstrong FA.

J Phys Chem B. 2015 Oct 29;119(43):13690-7. doi: 10.1021/acs.jpcb.5b03098. Epub 2015 Jul 15.

19.

Discovery of Dark pH-Dependent H(+) Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate.

Murphy BJ, Hidalgo R, Roessler MM, Evans RM, Ash PA, Myers WK, Vincent KA, Armstrong FA.

J Am Chem Soc. 2015 Jul 8;137(26):8484-9. doi: 10.1021/jacs.5b03182. Epub 2015 Jun 23.

20.

How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers.

Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA.

J Am Chem Soc. 2015 Apr 29;137(16):5381-9. doi: 10.1021/ja513074m. Epub 2015 Apr 14.

PMID:
25871921
21.

Spectroscopic and redox studies of valence-delocalized [Fe2S2](+) centers in thioredoxin-like ferredoxins.

Subramanian S, Duin EC, Fawcett SE, Armstrong FA, Meyer J, Johnson MK.

J Am Chem Soc. 2015 Apr 8;137(13):4567-80. doi: 10.1021/jacs.5b01869. Epub 2015 Mar 27.

22.

Investigations of the efficient electrocatalytic interconversions of carbon dioxide and carbon monoxide by nickel-containing carbon monoxide dehydrogenases.

Wang VC, Ragsdale SW, Armstrong FA.

Met Ions Life Sci. 2014;14:71-97. doi: 10.1007/978-94-017-9269-1_4. Review.

23.

Structural differences of oxidized iron-sulfur and nickel-iron cofactors in O2-tolerant and O2-sensitive hydrogenases studied by X-ray absorption spectroscopy.

Sigfridsson KGV, Leidel N, Sanganas O, Chernev P, Lenz O, Yoon KS, Nishihara H, Parkin A, Armstrong FA, Dementin S, Rousset M, De Lacey AL, Haumann M.

Biochim Biophys Acta. 2015 Feb;1847(2):162-170. doi: 10.1016/j.bbabio.2014.06.011. Epub 2014 Oct 12.

24.

Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode.

Bachmeier A, Hall S, Ragsdale SW, Armstrong FA.

J Am Chem Soc. 2014 Oct 1;136(39):13518-21. doi: 10.1021/ja506998b. Epub 2014 Sep 19.

25.

A multi-heme flavoenzyme as a solar conversion catalyst.

Bachmeier A, Murphy BJ, Armstrong FA.

J Am Chem Soc. 2014 Sep 17;136(37):12876-9. doi: 10.1021/ja507733j. Epub 2014 Sep 9.

PMID:
25203312
26.

Bacterial formate hydrogenlyase complex.

McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3948-56. doi: 10.1073/pnas.1407927111. Epub 2014 Aug 25.

27.

Unusual reaction of [NiFe]-hydrogenases with cyanide.

Hexter SV, Chung MW, Vincent KA, Armstrong FA.

J Am Chem Soc. 2014 Jul 23;136(29):10470-7. doi: 10.1021/ja504942h. Epub 2014 Jul 8.

PMID:
25003708
28.

How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases.

Wulff P, Day CC, Sargent F, Armstrong FA.

Proc Natl Acad Sci U S A. 2014 May 6;111(18):6606-11. doi: 10.1073/pnas.1322393111. Epub 2014 Apr 8.

29.

Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1.

Evans RM, Armstrong FA.

Methods Mol Biol. 2014;1122:73-94. doi: 10.1007/978-1-62703-794-5_6.

PMID:
24639254
30.

A unified model for surface electrocatalysis based on observations with enzymes.

Hexter SV, Esterle TF, Armstrong FA.

Phys Chem Chem Phys. 2014 Jun 28;16(24):11822-33. doi: 10.1039/c3cp55230f.

PMID:
24556983
31.

Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase.

Can M, Armstrong FA, Ragsdale SW.

Chem Rev. 2014 Apr 23;114(8):4149-74. doi: 10.1021/cr400461p. Epub 2014 Feb 13. Review. No abstract available.

32.

How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction.

Bachmeier A, Wang VC, Woolerton TW, Bell S, Fontecilla-Camps JC, Can M, Ragsdale SW, Chaudhary YS, Armstrong FA.

J Am Chem Soc. 2013 Oct 9;135(40):15026-32. doi: 10.1021/ja4042675. Epub 2013 Sep 26.

33.

Investigations of two bidirectional carbon monoxide dehydrogenases from Carboxydothermus hydrogenoformans by protein film electrochemistry.

Wang VC, Ragsdale SW, Armstrong FA.

Chembiochem. 2013 Sep 23;14(14):1845-51. doi: 10.1002/cbic.201300270. Epub 2013 Sep 3.

34.

Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases.

Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA.

J Am Chem Soc. 2013 Feb 20;135(7):2694-707. doi: 10.1021/ja311055d. Epub 2013 Feb 11.

PMID:
23398301
35.

Chemistry. Copying biology's ways with hydrogen.

Armstrong FA.

Science. 2013 Feb 8;339(6120):658-9. doi: 10.1126/science.1233210. No abstract available.

PMID:
23393255
36.

A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase.

Wang VC, Can M, Pierce E, Ragsdale SW, Armstrong FA.

J Am Chem Soc. 2013 Feb 13;135(6):2198-206. doi: 10.1021/ja308493k. Epub 2013 Jan 31.

37.

Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b.

Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC.

Structure. 2013 Jan 8;21(1):184-190. doi: 10.1016/j.str.2012.11.010. Epub 2012 Dec 20.

38.

EPR spectroscopic studies of the Fe-S clusters in the O2-tolerant [NiFe]-hydrogenase Hyd-1 from Escherichia coli and characterization of the unique [4Fe-3S] cluster by HYSCORE.

Roessler MM, Evans RM, Davies RA, Harmer J, Armstrong FA.

J Am Chem Soc. 2012 Sep 19;134(37):15581-94. Epub 2012 Sep 4. Erratum in: J Am Chem Soc. 2013 Mar 13;135(10):4159.

PMID:
22900997
39.

Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases.

Hexter SV, Grey F, Happe T, Climent V, Armstrong FA.

Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11516-21. doi: 10.1073/pnas.1204770109. Epub 2012 Jul 16. Erratum in: Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18232-3.

40.

Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude Fourier transformed AC voltammetry.

Stevenson GP, Lee CY, Kennedy GF, Parkin A, Baker RE, Gillow K, Armstrong FA, Gavaghan DJ, Bond AM.

Langmuir. 2012 Jun 26;28(25):9864-77. doi: 10.1021/la205037e. Epub 2012 Jun 14.

PMID:
22607123
41.

Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation.

Foster CE, Krämer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA.

J Am Chem Soc. 2012 May 2;134(17):7553-7. doi: 10.1021/ja302096r. Epub 2012 Apr 18.

PMID:
22512303
42.

X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli.

Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC.

Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5305-10. doi: 10.1073/pnas.1119806109. Epub 2012 Mar 19.

43.

Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases.

Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T.

J Biol Chem. 2012 Jan 6;287(2):1489-99. doi: 10.1074/jbc.M111.305797. Epub 2011 Nov 22.

44.

Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals.

Chaudhary YS, Woolerton TW, Allen CS, Warner JH, Pierce E, Ragsdale SW, Armstrong FA.

Chem Commun (Camb). 2012 Jan 4;48(1):58-60. doi: 10.1039/c1cc16107e. Epub 2011 Nov 15.

45.

Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster.

Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA.

J Am Chem Soc. 2011 Oct 26;133(42):16881-92. doi: 10.1021/ja205393w. Epub 2011 Oct 4.

PMID:
21916508
46.

Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes.

Armstrong FA, Hirst J.

Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14049-54. doi: 10.1073/pnas.1103697108. Epub 2011 Aug 15.

47.

How Salmonella oxidises H(2) under aerobic conditions.

Parkin A, Bowman L, Roessler MM, Davies RA, Palmer T, Armstrong FA, Sargent F.

FEBS Lett. 2012 Mar 9;586(5):536-44. doi: 10.1016/j.febslet.2011.07.044. Epub 2011 Aug 5.

48.
49.

A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase.

Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O.

Nat Chem Biol. 2011 May;7(5):310-8. doi: 10.1038/nchembio.555. Epub 2011 Mar 9. Erratum in: Nat Chem Biol. 2011 Sep;7(9):648.

PMID:
21390036
50.

Formaldehyde--a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases.

Wait AF, Brandmayr C, Stripp ST, Cavazza C, Fontecilla-Camps JC, Happe T, Armstrong FA.

J Am Chem Soc. 2011 Feb 9;133(5):1282-5. doi: 10.1021/ja110103p. Epub 2011 Jan 4.

PMID:
21204519

Supplemental Content

Loading ...
Support Center