Send to

Choose Destination
Brain Res Mol Brain Res. 1996 Jul;39(1-2):185-97.

A comprehensive study of the spatiotemporal pattern of beta-amyloid precursor protein mRNA and protein in the rat brain: lack of modulation by exogenously applied nerve growth factor.

Author information

Department of Genetics, Harvard Medical School, Belmont, MA 02178, USA.


Nerve growth factor (NGF) is a neurotrophic factor for basal forebrain cholinergic neurons, a population that degenerates and dies in Alzheimer's disease (AD). It has been suggested that NGF be used to treat AD patients. However, in vivo administration of NGF to the developing hamster brain was shown to induce the expression of the beta-amyloid precursor protein (beta APP) gene. The association of alterations in beta APP gene expression with AD-like neuropathological changes and cognitive impairment in animals, and with AD-like neurodegeneration in Down syndrome patients suggests that NGF-mediated increases in beta APP expression could negate or attenuate NGF's neurotrophic activity in AD treatment trials. The present study was undertaken to explore further the influence of NGF on beta APP expression, and to determine which, if any, of the beta APP mRNAs is altered in response to NGF treatment. We first examined the spatiotemporal pattern of beta APP-695 and Kunitz protease inhibitor (KPI)-containing beta APP mRNA expression in the rat brain. Specific oligonucleotide probes were used to show that these mRNAs are present during embryonic development. In addition, we evaluated postnatal expression in nine brain regions and showed that beta APP mRNAs were readily detected in all regions at postnatal day 2. In human brain, the relative levels of beta APP-695 and beta APP-KPI mRNA and their protein are discordant, in that the level of beta APP-695 mRNA is slightly higher than that of beta APP-KPI, but beta APP-KPI protein predominates. In contrast, the several-fold excess of beta APP-695 mRNA relative to beta APP-KPI mRNA in the rat brain was also reflected at the protein level. Surprisingly, administration of exogenous NGF failed to affect rat beta APP mRNA levels either in vitro or during postnatal development in vivo.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center