Send to

Choose Destination
Blood. 1995 Aug 1;86(3):1010-8.

Identification of two mutations (Arg611Cys and Arg611His) in the A1 loop of von Willebrand factor (vWF) responsible for type 2 von Willebrand disease with decreased platelet-dependent function of vWF.

Author information

Laboratoire de Recherche sur l'Hémostase, Centre Régional de Transfusion Sanguine de Lille, France.


We report the identification of von Willebrand factor (vWF) gene mutations within exon 28 occurring in three unrelated families with an infrequent form of type 2 von Willebrand disease (vWD). A C-->T transition and a G-->A transition, both at the codon for arginine 611 of the mature vWF subunit, were found. They result in either a cysteine or an histidine substitution, respectively. Patients were found to be heterozygous for these substitutions and the vWD was transmitted dominantly. These substitutions have been reproduced by in vitro mutagenesis of full-length cDNA of vWF and transiently expressed in Cos-7 cells. The corresponding recombinant vWFs (rvWF) exhibited decreased expression and a significant decrease in the high molecular weight multimeric forms. In addition, ristocetin- and botrocetin-induced binding of mutated rvWFs to platelets were markedly decreased as compared with that for the wild-type rvWFs. Thus, the structural and functional characterization of both mutated rvWFs confirmed that the two nucleotide substitutions identified at position 611 of the mature subunit of vWF are real mutations. Although they are located in the A1 loop containing most of the type 2B mutations inducing increased affinity of vWF for platelet glycoprotein Ib, they are responsible for abnormal vWF with decreased platelet-dependent function.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center