Format

Send to

Choose Destination
BMC Genomics. 2015 Jun 16;16:461. doi: 10.1186/s12864-015-1660-8.

Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus.

Author information

1
Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA. michael.perlin@louisville.edu.
2
Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. joelle.amselem@versailles.inra.fr.
3
Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France. joelle.amselem@versailles.inra.fr.
4
Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. eric.fonta@gmail.com.
5
CNRS, F-91405, Orsay, France. eric.fonta@gmail.com.
6
Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA. susan.toh@louisville.edu.
7
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. zchen@broadinstitute.org.
8
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. goldberg@hsph.harvard.edu.
9
INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. duplessi@nancy.inra.fr.
10
UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France. duplessi@nancy.inra.fr.
11
Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. bernard.henrissat@afmb.univ-mrs.fr.
12
Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. bernard.henrissat@afmb.univ-mrs.fr.
13
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. stowey@broadinstitute.org.
14
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. qiandong_zeng@hotmail.com.
15
Centre for Genomic Regulation (CRG), Barcelona, Spain. gabriela.aguileta@crg.eu.
16
Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. elsa.petit@u-psud.fr.
17
CNRS, F-91405, Orsay, France. elsa.petit@u-psud.fr.
18
Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. elsa.petit@u-psud.fr.
19
Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. helene.badouin@u-psud.fr.
20
CNRS, F-91405, Orsay, France. helene.badouin@u-psud.fr.
21
Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA. jared.andrews07@gmail.com.
22
Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA. dominique.razeeq@louisville.edu.
23
Centre for Genomic Regulation (CRG), Barcelona, Spain. toni.gabaldon@crg.eu.
24
Universitat Pompeu Fabra (UPF), Barcelona, Spain. toni.gabaldon@crg.eu.
25
Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain. toni.gabaldon@crg.eu.
26
Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. Hadi.Quesneville@versailles.inra.fr.
27
Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. tatiana.giraud@u-psud.fr.
28
CNRS, F-91405, Orsay, France. tatiana.giraud@u-psud.fr.
29
Department of Biology, Amherst College, Amherst, MA, 01002, USA. mhood@amherst.edu.
30
Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA. david.schultz@louisville.edu.
31
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. cuomo@broadinstitute.org.

Abstract

BACKGROUND:

The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development.

RESULTS:

We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions.

CONCLUSIONS:

The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.

PMID:
26076695
PMCID:
PMC4469406
DOI:
10.1186/s12864-015-1660-8
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center