Format

Send to

Choose Destination
Hum Mutat. 2010 Jul;31(7):801-8. doi: 10.1002/humu.21272.

Understanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis.

Author information

1
Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.

Abstract

Carbamoyl-phosphate synthetase I (CPS1) deficiency (CPS1D), a recessively inherited urea cycle error due to CPS1 gene mutations, causes life-threatening hyperammonemia. The disease-causing potential of missense mutations in CPS1 deficiency can be ascertained with the recombinant CPS1 expression and purification system reported here, which uses baculovirus and insect cells. We study with this system the effects of nine clinical mutations and one polymorphism on CPS1 solubility, stability, activity, and kinetic parameters for NAG. Five of the mutations (p.T471N, p.Q678P, p.P774L, p.R1453Q, and p.R1453W) are first reported here, in three severe CPS1D patients. p.P774L, p.R1453Q, and p.R1453W inactivate CPS1, p.T471N and p.Y1491H greatly decrease the apparent affinity for NAG, p.Q678P hampers correct enzyme folding, and p.S123F, p.H337R, and p.P1411L modestly decrease activity. p.G1376S is confirmed a trivial polymorphism. The effects of the C-terminal domain mutations are rationalized in the light of this domain crystal structure, including the NAG site structure [Pekkala et al. Biochem J 424:211-220]. The agreement of clinical observations and in vitro findings, and the possibility to identify CPS1D patients who might benefit from specific treatment with NAG analogues because they exhibit reduced affinity for NAG highlight the value of this novel CPS1 expression/purification system.

PMID:
20578160
DOI:
10.1002/humu.21272
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center