Format

Send to

Choose Destination
FEBS J. 2009 Jun;276(11):3148-62. doi: 10.1111/j.1742-4658.2009.07033.x. Epub 2009 Apr 28.

Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice.

Author information

1
National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India. mjain@nipgr.res.in

Abstract

Auxin influences growth and development in plants by altering gene expression. Many auxin-responsive genes have been characterized in Arabidopsis in detail, but not in crop plants. Earlier, we reported the identification and characterization of the members of the GH3, Aux/IAA and SAUR gene families in rice. In this study, whole genome microarray analysis of auxin-responsive genes in rice was performed, with the aim of gaining some insight into the mechanism of auxin action. A comparison of expression profiles of untreated and auxin-treated rice seedlings identified 315 probe sets representing 298 (225 upregulated and 73 downregulated) unique genes as auxin-responsive. Functional categorization revealed that genes involved in various biological processes, including metabolism, transcription, signal transduction, and transport, are regulated by auxin. The expression profiles of auxin-responsive genes identified in this study and those of the members of the GH3, Aux/IAA, SAUR and ARF gene families were analyzed during various stages of vegetative and reproductive (panicle and seed) development by employing microarray analysis. Many of these genes are, indeed, expressed in a tissue-specific or developmental stage-specific manner, and the expression profiles of some of the representative genes were confirmed by real-time PCR. The differential expression of auxin-responsive genes during various stages of panicle and seed development implies their involvement in diverse developmental processes. Moreover, several auxin-responsive genes were differentially expressed under various abiotic stress conditions, indicating crosstalk between auxin and abiotic stress signaling.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center