Format

Send to

Choose Destination
BMC Bioinformatics. 2008 May 12;9:234. doi: 10.1186/1471-2105-9-234.

Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces.

Author information

1
Computational Science and Mathematics Division and BioEnergy Science Center, Oak Ridge National Laboratory, PO Box 2008, MS 6173, Oak Ridge, TN 37831, USA. bordner.andrew@mayo.edu

Abstract

BACKGROUND:

Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB).

RESULTS:

We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section).

CONCLUSION:

Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.

PMID:
18474114
PMCID:
PMC2413245
DOI:
10.1186/1471-2105-9-234
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center