Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 340

1.

Excessive salt intake increases peritoneal solute transport rate via local tonicity-responsive enhancer binding protein in subtotal nephrectomized mice.

Sun T, Sakata F, Ishii T, Tawada M, Suzuki Y, Kinashi H, Katsuno T, Takei Y, Maruyama S, Mizuno M, Ito Y.

Nephrol Dial Transplant. 2019 Mar 20. pii: gfz045. doi: 10.1093/ndt/gfz045. [Epub ahead of print]

PMID:
30897196
2.

Antibiotic Dosing in Chronic Kidney Disease and End-Stage Renal Disease: A Focus on Contemporary Challenges.

Vilay AM.

Adv Chronic Kidney Dis. 2019 Jan;26(1):61-71. doi: 10.1053/j.ackd.2018.10.006. Review.

PMID:
30876619
3.

COMPUTER SIMULATIONS OF CONTINUOUS FLOW PERITONEAL DIALYSIS USING THE 3-PORE MODEL-A FIRST EXPERIENCE.

Öberg CM, Martuseviciene G.

Perit Dial Int. 2019 Mar 6. pii: pdi.2018.00225. doi: 10.3747/pdi.2018.00225. [Epub ahead of print]

PMID:
30846606
4.

Study on the Prevalence of Vascular Calcification in Different Types of Arteries and Influencing Factors in Maintenance Peritoneal Dialysis Patients.

Niu Q, Zhao H, Wu B, Tsai S, Wu J, Zhang M, Lu L, Qiao J, Men C, Zuo L, Wang M.

Blood Purif. 2019;47 Suppl 1:8-16. doi: 10.1159/000496218. Epub 2019 Jan 30.

5.

Clearance of Magnesium in Peritoneal Dialysis Patients: A Single-Center Study.

Li G, Zhang L, Ren H, Huang B, Mao C, Zhou A.

Blood Purif. 2019;47 Suppl 1:1-7. doi: 10.1159/000496217. Epub 2019 Jan 30.

6.

FLUID TONICITY AFFECTS PERITONEAL CHARACTERISTICS DERIVED BY 3-PORE MODEL.

Stachowska-Pietka J, Poleszczuk J, Teixido-Planas J, Bonet-Sol J, Troya-Saborido MI, Waniewski J.

Perit Dial Int. 2019 Jan 18. pii: pdi.2017.00267. doi: 10.3747/pdi.2017.00267. [Epub ahead of print]

PMID:
30661006
7.

Relationships Between Peritoneal Protein Clearance and Parameters of Fluid Status Agree with Clinical Observations in Other Diseases that Venous Congestion Increases Microvascular Protein Escape.

Krediet RT, Yoowannakul S, Harris LS, Davenport A.

Perit Dial Int. 2019 Mar-Apr;39(2):155-162. doi: 10.3747/pdi.2018.00016. Epub 2019 Jan 18.

PMID:
30661003
8.

Patient-Centric User-Interface in Automated Peritoneal Dialysis: Impact on Training and Outcomes at a Single Center.

Sharma S, Kattamanchi S, Gonzales MG, Sloand JA, Uribarri J.

Blood Purif. 2019 Jan 2:1-4. doi: 10.1159/000495341. [Epub ahead of print]

PMID:
30602155
9.

Peritoneal dialysis fluid biocompatibility impact on human peritoneal membrane permeability.

Rodríguez-Esparragón F, Marrero-Robayna S, González-Cabrera F, Hernández-Trujillo Y, Buset-Ríos N, Carlos Rodríguez-Pérez J, Vega-Díaz N.

Clin Kidney J. 2018 Dec;11(6):881-888. doi: 10.1093/ckj/sfy043. Epub 2018 Jun 25.

10.

A need for a paradigm shift in focus: From Kt/Vurea to appropriate removal of sodium (the ignored uremic toxin).

Twardowski ZJ, Misra M.

Hemodial Int. 2018 Oct;22(S2):S29-S64. doi: 10.1111/hdi.12701. Epub 2018 Nov 20. Review.

PMID:
30457224
11.

Peritoneal dialysis after kidney transplant failure: a nationwide matched cohort study from the French Language Peritoneal Dialysis Registry (RDPLF).

Benomar M, Vachey C, Lobbedez T, Henriques J, Ducloux D, Vernerey D, Courivaud C.

Nephrol Dial Transplant. 2018 Oct 24. doi: 10.1093/ndt/gfy290. [Epub ahead of print]

PMID:
30358867
12.

The Effect of Automated Versus Continuous Ambulatory Peritoneal Dialysis on Mortality Risk In China.

Li X, Xu H, Chen N, Ni Z, Chen M, Chen L, Dong J, Fang W, Yu Y, Yang X, Chen J, Yu X, Yao Q, Sloand JA, Marshall MR.

Perit Dial Int. 2018 Dec;38(Suppl 2):S25-S35. doi: 10.3747/pdi.2017.00235. Epub 2018 Oct 12.

PMID:
30315042
13.

Number of Daily Peritoneal Dialysis Exchanges and Mortality Risk in a Chinese Population.

Yu X, Chen J, Ni Z, Chen N, Chen M, Dong J, Chen L, Yu Y, Yang X, Fang W, Yao Q, Sloand JA, Marshall MR.

Perit Dial Int. 2018 Dec;38(Suppl 2):S53-S63. doi: 10.3747/pdi.2017.00283. Epub 2018 Oct 12.

PMID:
30315040
14.

Calculating Standard Kt/V during Hemodialysis Based on Urea Mass Removed.

Leypoldt JK, Vonesh EF.

Blood Purif. 2019;47(1-3):62-68. doi: 10.1159/000493178. Epub 2018 Oct 8.

PMID:
30296780
15.

Solute Clearance and Fluid Removal: Large-Dose Cyclic Tidal Peritoneal Dialysis.

Hibino S, Uemura O, Uchida H, Majima H, Yamaguchi R, Tanaka K, Kawaguchi A, Yamakawa S, Fujita N.

Ther Apher Dial. 2018 Sep 27. doi: 10.1111/1744-9987.12765. [Epub ahead of print]

PMID:
30259676
16.

Planning Vascular Access in Peritoneal Dialysis-Defining High-Risk Patients.

Ferreira H, Nunes A, Oliveira A, Beco A, Santos J, Pestana M.

Perit Dial Int. 2018 Jul-Aug;38(4):271-277. doi: 10.3747/pdi.2017.00180. Epub 2018 Jun 6.

PMID:
29875179
17.

Outcomes and Challenges of a PD-First Program, a South-African Perspective.

Davidson B, Crombie K, Manning K, Rayner B, Wearne N.

Perit Dial Int. 2018 May-Jun;38(3):179-186. doi: 10.3747/pdi.2017.00182.

PMID:
29848598
18.

Different patterns of inflammatory and angiogenic factors are associated with peritoneal small solute transport and peritoneal protein clearance in peritoneal dialysis patients.

Shi Y, Yan H, Yuan J, Zhang H, Huang J, Ni Z, Qian J, Fang W.

BMC Nephrol. 2018 May 23;19(1):119. doi: 10.1186/s12882-018-0921-6.

19.

Remote Monitoring of Automated Peritoneal Dialysis Improves Personalization of Dialytic Prescription and Patient's Independence.

Milan Manani S, Crepaldi C, Giuliani A, Virzì GM, Garzotto F, Riello C, de Cal M, Rosner MH, Ronco C.

Blood Purif. 2018;46(2):111-117. doi: 10.1159/000487703. Epub 2018 Apr 25.

PMID:
29694954
20.

A Large Intraperitoneal Residual Volume Hampers Adequate Volumetric Assessment of Osmotic Conductance to Glucose.

Clause AL, Keddar M, Crott R, Darius T, Fillee C, Goffin E, Morelle J.

Perit Dial Int. 2018 Sep-Oct;38(5):356-362. doi: 10.3747/pdi.2017.00219. Epub 2018 Apr 19.

PMID:
29674410

Supplemental Content

Loading ...
Support Center