Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.).

Stratilová B, Firáková Z, Klaudiny J, Šesták S, Kozmon S, Strouhalová D, Garajová S, Ait-Mohand F, Horváthová Á, Farkaš V, Stratilová E, Hrmova M.

Plant Mol Biol. 2019 May;100(1-2):181-197. doi: 10.1007/s11103-019-00852-8. Epub 2019 Mar 13.

PMID:
30868545
2.

Synthesis of N-benzyl substituted 1,4-imino-l-lyxitols with a basic functional group as selective inhibitors of Golgi α-mannosidase IIb.

Klunda T, Šesták S, Kóňa J, Poláková M.

Bioorg Chem. 2019 Mar;83:424-431. doi: 10.1016/j.bioorg.2018.10.066. Epub 2018 Oct 31.

PMID:
30428432
3.

Synthesis of 1,4-imino-L-lyxitols modified at C-5 and their evaluation as inhibitors of GH38 α-mannosidases.

Bella M, Šesták S, Moncoľ J, Koóš M, Poláková M.

Beilstein J Org Chem. 2018 Aug 17;14:2156-2162. doi: 10.3762/bjoc.14.189. eCollection 2018.

4.

N-Benzyl Substitution of Polyhydroxypyrrolidines: The Way to Selective Inhibitors of Golgi α-Mannosidase II.

Šesták S, Bella M, Klunda T, Gurská S, Džubák P, Wöls F, Wilson IBH, Sladek V, Hajdúch M, Poláková M, Kóňa J.

ChemMedChem. 2018 Feb 20;13(4):373-383. doi: 10.1002/cmdc.201700607. Epub 2018 Feb 6.

5.

Characterization of a long-chain α-galactosidase from Papiliotrema flavescens.

Stratilová B, Klaudiny J, Řehulka P, Stratilová E, Mészárosová C, Garajová S, Pavlatovská B, Řehulková H, Kozmon S, Šesták S, Firáková Z, Vadkertiová R.

World J Microbiol Biotechnol. 2018 Jan 4;34(2):19. doi: 10.1007/s11274-017-2403-6.

PMID:
29302817
6.

Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases.

Mirabella S, D'Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jiménez-Barbero J, Cardona F.

Chemistry. 2017 Oct 17;23(58):14585-14596. doi: 10.1002/chem.201703011. Epub 2017 Sep 13.

PMID:
28902965
7.

Bypass of Activation Loop Phosphorylation by Aspartate 836 in Activation of the Endoribonuclease Activity of Ire1.

Armstrong MC, Šestak S, Ali AA, Sagini HAM, Brown M, Baty K, Treumann A, Schröder M.

Mol Cell Biol. 2017 Jul 28;37(16). pii: e00655-16. doi: 10.1128/MCB.00655-16. Print 2017 Aug 15.

8.

Synthesis of modified D-mannose core derivatives and their impact on GH38 α-mannosidases.

Poláková M, Horák R, Šesták S, Holková I.

Carbohydr Res. 2016 Jun 16;428:62-71. doi: 10.1016/j.carres.2016.04.004. Epub 2016 Apr 11.

PMID:
27152630
9.

Polymeric iminosugars improve the activity of carbohydrate-processing enzymes.

Brissonnet Y, Ladevèze S, Tezé D, Fabre E, Deniaud D, Daligault F, Tellier C, Šesták S, Remaud-Simeon M, Potocki-Veronese G, Gouin SG.

Bioconjug Chem. 2015 Apr 15;26(4):766-72. doi: 10.1021/acs.bioconjchem.5b00081. Epub 2015 Mar 13.

PMID:
25741759
10.

'Click chemistry' synthesis of 1-(α-D-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases.

Poláková M, Stanton R, Wilson IB, Holková I, Šesták S, Machová E, Jandová Z, Kóňa J.

Carbohydr Res. 2015 Apr 10;406:34-40. doi: 10.1016/j.carres.2015.01.004. Epub 2015 Jan 19.

11.

Topological effects and binding modes operating with multivalent iminosugar-based glycoclusters and mannosidases.

Brissonnet Y, Ortiz Mellet C, Morandat S, Garcia Moreno MI, Deniaud D, Matthews SE, Vidal S, Šesták S, El Kirat K, Gouin SG.

J Am Chem Soc. 2013 Dec 11;135(49):18427-35. doi: 10.1021/ja406931w. Epub 2013 Nov 23. Erratum in: J Am Chem Soc. 2014 May 7;136(18):6773.

PMID:
24224682
12.

Characterisation of class I and II α-mannosidases from Drosophila melanogaster.

Nemčovičová I, Šesták S, Rendić D, Plšková M, Mucha J, Wilson IB.

Glycoconj J. 2013 Dec;30(9):899-909. doi: 10.1007/s10719-013-9495-5. Epub 2013 Aug 25.

PMID:
23979800
13.

Expression, purification and preliminary crystallographic analysis of Drosophila melanogaster lysosomal α-mannosidase.

Nemčovičová I, Nemčovič M, Sesták S, Plšková M, Wilson IB, Mucha J.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Aug 1;68(Pt 8):965-70. doi: 10.1107/S1744309112029375. Epub 2012 Jul 31.

14.

α-D-mannose derivatives as models designed for selective inhibition of Golgi α-mannosidase II.

Poláková M, Šesták S, Lattová E, Petruš L, Mucha J, Tvaroška I, Kóňa J.

Eur J Med Chem. 2011 Mar;46(3):944-52. doi: 10.1016/j.ejmech.2011.01.012. Epub 2011 Jan 15.

PMID:
21295890
15.

Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae.

Sestak S, Hagen I, Tanner W, Strahl S.

Microbiology. 2004 Oct;150(Pt 10):3197-208.

PMID:
15470100
16.

Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins.

Hagen I, Ecker M, Lagorce A, Francois JM, Sestak S, Rachel R, Grossmann G, Hauser NC, Hoheisel JD, Tanner W, Strahl S.

Mol Microbiol. 2004 Jun;52(5):1413-25.

17.

In situ assays of fungal enzymes in cells permeabilized by osmotic shock.

Sesták S, Farkas V.

Anal Biochem. 2001 May 1;292(1):34-9.

PMID:
11319815
18.

Cell wall and cytoskeleton reorganization as the response to hyperosmotic shock in Saccharomyces cerevisiae.

Slaninová I, Sesták S, Svoboda A, Farkas V.

Arch Microbiol. 2000 Apr;173(4):245-52.

PMID:
10816042
19.

Supplemental Content

Loading ...
Support Center