Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 49

1.

Role of DNA Repair and Protective Components in Bacillus subtilis Spore Resistance to Inactivation by 400 nm Blue Light.

Djouiai B, Thwaite JE, Laws TR, Commichau FM, Setlow B, Setlow P, Moeller R.

Appl Environ Microbiol. 2018 Jul 27. pii: AEM.01604-18. doi: 10.1128/AEM.01604-18. [Epub ahead of print]

PMID:
30054368
2.

Coping with an Essential Poison: a Genetic Suppressor Analysis Corroborates a Key Function of c-di-AMP in Controlling Potassium Ion Homeostasis in Gram-Positive Bacteria.

Commichau FM, Stülke J.

J Bacteriol. 2018 May 24;200(12). pii: e00166-18. doi: 10.1128/JB.00166-18. Print 2018 Jun 15.

PMID:
29610213
3.

Visualization of tandem repeat mutagenesis in Bacillus subtilis.

Dormeyer M, Lentes S, Ballin P, Wilkens M, Klumpp S, Kohlheyer D, Stannek L, Grünberger A, Commichau FM.

DNA Repair (Amst). 2018 Mar;63:10-15. doi: 10.1016/j.dnarep.2018.01.006. Epub 2018 Jan 31.

PMID:
29414049
4.

Changes of DNA topology affect the global transcription landscape and allow rapid growth of a Bacillus subtilis mutant lacking carbon catabolite repression.

Reuß DR, Rath H, Thürmer A, Benda M, Daniel R, Völker U, Mäder U, Commichau FM, Stülke J.

Metab Eng. 2018 Jan;45:171-179. doi: 10.1016/j.ymben.2017.12.004. Epub 2017 Dec 11.

PMID:
29242163
5.

A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis.

Rosenberg J, Yeak KC, Commichau FM.

Environ Microbiol. 2018 Jan;20(1):156-168. doi: 10.1111/1462-2920.13950. Epub 2017 Oct 27.

PMID:
29027347
6.

A Delicate Connection: c-di-AMP Affects Cell Integrity by Controlling Osmolyte Transport.

Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stülke J.

Trends Microbiol. 2018 Mar;26(3):175-185. doi: 10.1016/j.tim.2017.09.003. Epub 2017 Sep 28. Review.

PMID:
28965724
7.

Erratum to: Of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP.

Gundlach J, Commichau FM, Stülke J.

Curr Genet. 2018 Feb;64(1):197. doi: 10.1007/s00294-017-0745-0.

PMID:
28884192
8.

Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP.

Gundlach J, Commichau FM, Stülke J.

Curr Genet. 2018 Feb;64(1):191-195. doi: 10.1007/s00294-017-0734-3. Epub 2017 Aug 20. Review. Erratum in: Curr Genet. 2017 Sep 7;:.

PMID:
28825218
9.

The contribution of bacterial genome engineering to sustainable development.

Reuß DR, Commichau FM, Stülke J.

Microb Biotechnol. 2017 Sep;10(5):1259-1263. doi: 10.1111/1751-7915.12784. Epub 2017 Aug 3.

10.

Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis.

Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiß M, Gibhardt J, Thürmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stülke J.

Sci Signal. 2017 Apr 18;10(475). pii: eaal3011. doi: 10.1126/scisignal.aal3011.

PMID:
28420751
11.

Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

Dormeyer M, Lübke AL, Müller P, Lentes S, Reuß DR, Thürmer A, Stülke J, Daniel R, Brantl S, Commichau FM.

Environ Microbiol Rep. 2017 Jun;9(3):279-289. doi: 10.1111/1758-2229.12531. Epub 2017 Apr 3.

PMID:
28294562
12.

Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism.

Reuß DR, Altenbuchner J, Mäder U, Rath H, Ischebeck T, Sappa PK, Thürmer A, Guérin C, Nicolas P, Steil L, Zhu B, Feussner I, Klumpp S, Daniel R, Commichau FM, Völker U, Stülke J.

Genome Res. 2017 Feb;27(2):289-299. doi: 10.1101/gr.215293.116. Epub 2016 Dec 13.

13.

Vitamin B6 metabolism in microbes and approaches for fermentative production.

Rosenberg J, Ischebeck T, Commichau FM.

Biotechnol Adv. 2017 Jan - Feb;35(1):31-40. doi: 10.1016/j.biotechadv.2016.11.004. Epub 2016 Nov 24. Review.

PMID:
27890703
14.

The Blueprint of a Minimal Cell: MiniBacillus.

Reuß DR, Commichau FM, Gundlach J, Zhu B, Stülke J.

Microbiol Mol Biol Rev. 2016 Sep 28;80(4):955-987. Print 2016 Dec. Review.

15.

ThrR, a DNA-binding transcription factor involved in controlling threonine biosynthesis in Bacillus subtilis.

Rosenberg J, Müller P, Lentes S, Thiele MJ, Zeigler DR, Tödter D, Paulus H, Brantl S, Stülke J, Commichau FM.

Mol Microbiol. 2016 Sep;101(5):879-93. doi: 10.1111/mmi.13429. Epub 2016 Jun 27.

16.

Salt-sensitivity of σ(H) and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation.

Widderich N, Rodrigues CD, Commichau FM, Fischer KE, Ramirez-Guadiana FH, Rudner DZ, Bremer E.

Mol Microbiol. 2016 Apr;100(1):108-24. doi: 10.1111/mmi.13304. Epub 2016 Jan 18.

17.

Phenotypes Associated with the Essential Diadenylate Cyclase CdaA and Its Potential Regulator CdaR in the Human Pathogen Listeria monocytogenes.

Rismondo J, Gibhardt J, Rosenberg J, Kaever V, Halbedel S, Commichau FM.

J Bacteriol. 2015 Nov 2;198(3):416-26. doi: 10.1128/JB.00845-15. Print 2016 Feb 1.

18.

Trigger Enzymes: Coordination of Metabolism and Virulence Gene Expression.

Commichau FM, Stülke J.

Microbiol Spectr. 2015 Aug;3(4). doi: 10.1128/microbiolspec.MBP-0010-2014. Review.

PMID:
26350309
19.

A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP.

Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J.

Mol Microbiol. 2015 Jul;97(2):189-204. doi: 10.1111/mmi.13026. Epub 2015 May 9. Review.

20.

Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine.

Commichau FM, Alzinger A, Sande R, Bretzel W, Reuß DR, Dormeyer M, Chevreux B, Schuldes J, Daniel R, Akeroyd M, Wyss M, Hohmann HP, Prágai Z.

Metab Eng. 2015 May;29:196-207. doi: 10.1016/j.ymben.2015.03.007. Epub 2015 Mar 14.

PMID:
25777134
21.

Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.

Stannek L, Thiele MJ, Ischebeck T, Gunka K, Hammer E, Völker U, Commichau FM.

Environ Microbiol. 2015 Sep;17(9):3379-90. doi: 10.1111/1462-2920.12813. Epub 2015 Mar 27.

PMID:
25711804
22.

Factors that mediate and prevent degradation of the inactive and unstable GudB protein in Bacillus subtilis.

Stannek L, Gunka K, Care RA, Gerth U, Commichau FM.

Front Microbiol. 2015 Jan 7;5:758. doi: 10.3389/fmicb.2014.00758. eCollection 2014.

23.

Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes.

Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stülke J, Ficner R, Commichau FM.

J Biol Chem. 2015 Mar 6;290(10):6596-606. doi: 10.1074/jbc.M114.630418. Epub 2015 Jan 20.

24.

A novel engineering tool in the Bacillus subtilis toolbox: inducer-free activation of gene expression by selection-driven promoter decryptification.

Dormeyer M, Egelkamp R, Thiele MJ, Hammer E, Gunka K, Stannek L, Völker U, Commichau FM.

Microbiology. 2015 Feb;161(Pt 2):354-61. doi: 10.1099/mic.0.000001. Epub 2014 Dec 3.

PMID:
25473090
25.

Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering.

Juhas M, Reuß DR, Zhu B, Commichau FM.

Microbiology. 2014 Nov;160(Pt 11):2341-51. doi: 10.1099/mic.0.079376-0. Epub 2014 Aug 4. Review.

PMID:
25092907
26.

Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine.

Commichau FM, Alzinger A, Sande R, Bretzel W, Meyer FM, Chevreux B, Wyss M, Hohmann HP, Prágai Z.

Metab Eng. 2014 Sep;25:38-49. doi: 10.1016/j.ymben.2014.06.007. Epub 2014 Jun 24.

PMID:
24972371
27.

Monitoring intraspecies competition in a bacterial cell population by cocultivation of fluorescently labelled strains.

Stannek L, Egelkamp R, Gunka K, Commichau FM.

J Vis Exp. 2014 Jan 18;(83):e51196. doi: 10.3791/51196.

28.

Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.

Bartholomae M, Meyer FM, Commichau FM, Burkovski A, Hillen W, Seidel G.

FEBS J. 2014 Feb;281(4):1132-43. doi: 10.1111/febs.12679. Epub 2014 Jan 9.

29.

Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break.

Vlašić I, Mertens R, Seco EM, Carrasco B, Ayora S, Reitz G, Commichau FM, Alonso JC, Moeller R.

Nucleic Acids Res. 2014 Feb;42(4):2295-307. doi: 10.1093/nar/gkt1194. Epub 2013 Nov 26.

30.

SubtiWiki-a database for the model organism Bacillus subtilis that links pathway, interaction and expression information.

Michna RH, Commichau FM, Tödter D, Zschiedrich CP, Stülke J.

Nucleic Acids Res. 2014 Jan;42(Database issue):D692-8. doi: 10.1093/nar/gkt1002. Epub 2013 Oct 30.

31.

The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis.

Zaprasis A, Hoffmann T, Stannek L, Gunka K, Commichau FM, Bremer E.

J Bacteriol. 2014 Feb;196(3):515-26. doi: 10.1128/JB.01128-13. Epub 2013 Oct 18.

33.

The resuscitation promotion concept extends to firmicutes.

Commichau FM, Halbedel S.

Microbiology. 2013 Jul;159(Pt 7):1298-300. doi: 10.1099/mic.0.069484-0. Epub 2013 May 23. No abstract available.

PMID:
23704784
34.

Essential genes in Bacillus subtilis: a re-evaluation after ten years.

Commichau FM, Pietack N, Stülke J.

Mol Biosyst. 2013 Jun;9(6):1068-75. doi: 10.1039/c3mb25595f. Epub 2013 Feb 18. Review.

PMID:
23420519
35.

A mystery unraveled: essentiality of RNase III in Bacillus subtilis is caused by resident prophages.

Commichau FM, Stülke J.

PLoS Genet. 2012;8(12):e1003199. doi: 10.1371/journal.pgen.1003199. Epub 2012 Dec 27. No abstract available.

36.

Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation.

Gunka K, Commichau FM.

Mol Microbiol. 2012 Jul;85(2):213-24. doi: 10.1111/j.1365-2958.2012.08105.x. Epub 2012 Jun 5. Review.

37.

A high-frequency mutation in Bacillus subtilis: requirements for the decryptification of the gudB glutamate dehydrogenase gene.

Gunka K, Tholen S, Gerwig J, Herzberg C, Stülke J, Commichau FM.

J Bacteriol. 2012 Mar;194(5):1036-44. doi: 10.1128/JB.06470-11. Epub 2011 Dec 16.

38.

RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.

Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, Herzberg C, Commichau FM, Lewis RJ, Stülke J.

J Bacteriol. 2011 Oct;193(19):5431-41. doi: 10.1128/JB.05500-11. Epub 2011 Jul 29.

39.

Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon.

Meyer FM, Gerwig J, Hammer E, Herzberg C, Commichau FM, Völker U, Stülke J.

Metab Eng. 2011 Jan;13(1):18-27. doi: 10.1016/j.ymben.2010.10.001. Epub 2010 Oct 8.

PMID:
20933603
40.

Functional dissection of a trigger enzyme: mutations of the bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties.

Gunka K, Newman JA, Commichau FM, Herzberg C, Rodrigues C, Hewitt L, Lewis RJ, Stülke J.

J Mol Biol. 2010 Jul 23;400(4):815-27. doi: 10.1016/j.jmb.2010.05.055. Epub 2010 May 31.

PMID:
20630473
41.

In vitro phosphorylation of key metabolic enzymes from Bacillus subtilis: PrkC phosphorylates enzymes from different branches of basic metabolism.

Pietack N, Becher D, Schmidl SR, Saier MH, Hecker M, Commichau FM, Stülke J.

J Mol Microbiol Biotechnol. 2010;18(3):129-40. doi: 10.1159/000308512. Epub 2010 Apr 13.

PMID:
20389117
42.

Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing.

Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M, Hammer E, Völker U, Stülke J.

Mol Cell Proteomics. 2009 Jun;8(6):1350-60. doi: 10.1074/mcp.M800546-MCP200. Epub 2009 Feb 3.

43.

Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system.

Commichau FM, Gunka K, Landmann JJ, Stülke J.

J Bacteriol. 2008 May;190(10):3557-64. doi: 10.1128/JB.00099-08. Epub 2008 Mar 7.

44.

Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression.

Commichau FM, Stülke J.

Mol Microbiol. 2008 Feb;67(4):692-702. Epub 2007 Dec 11. Review.

45.

SPINE: a method for the rapid detection and analysis of protein-protein interactions in vivo.

Herzberg C, Weidinger LA, Dörrbecker B, Hübner S, Stülke J, Commichau FM.

Proteomics. 2007 Nov;7(22):4032-5.

PMID:
17994626
46.
47.

Characterization of Bacillus subtilis mutants with carbon source-independent glutamate biosynthesis.

Commichau FM, Wacker I, Schleider J, Blencke HM, Reif I, Tripal P, Stülke J.

J Mol Microbiol Biotechnol. 2007;12(1-2):106-13.

PMID:
17183217
48.

Regulatory links between carbon and nitrogen metabolism.

Commichau FM, Forchhammer K, Stülke J.

Curr Opin Microbiol. 2006 Apr;9(2):167-72. Epub 2006 Feb 2. Review.

PMID:
16458044
49.

Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system.

Blencke HM, Reif I, Commichau FM, Detsch C, Wacker I, Ludwig H, Stülke J.

Arch Microbiol. 2006 Mar;185(2):136-46. Epub 2006 Jan 5.

PMID:
16395550

Supplemental Content

Loading ...
Support Center