Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Identification of a novel, small molecule activator of KCNQ1 channels.

Yu H, Lin Z, Xu K, Huang X, Long S, Wu M, McManus OB, Le Engers J, Mattmann ME, Engers DW, Le UM, Lindsley CW, Hopkins CR, Li M.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2011 Dec 16 [updated 2013 Mar 7].

2.

Identification of (R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide, ML277, as a novel, potent and selective K(v)7.1 (KCNQ1) potassium channel activator.

Mattmann ME, Yu H, Lin Z, Xu K, Huang X, Long S, Wu M, McManus OB, Engers DW, Le UM, Li M, Lindsley CW, Hopkins CR.

Bioorg Med Chem Lett. 2012 Sep 15;22(18):5936-41. doi: 10.1016/j.bmcl.2012.07.060. Epub 2012 Aug 2.

3.

A small molecule activator of KCNQ2 and KCNQ4 channels.

Yu H, Wu M, Hopkins C, Engers J, Townsend S, Lindsley C, McManus OB, Li M.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2011 Mar 29 [updated 2013 Feb 28].

4.

Identification of a novel, small molecule inhibitor of KCNQ2 channels.

Yu H, Xu K, Zou B, Wu M, McManus OB, Le Engers J, Cheung YY, Salovich JM, Hopkins CR, Lindsley CW, Li M.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2011 Oct 28 [updated 2013 Feb 25].

5.

ML365: Development of Bis-Amides as Selective Inhibitors of the KCNK3/TASK1 Two Pore Potassium Channel.

Zou B, Flaherty DP, Simpson DS, Maki BE, Miller MR, Shi J, Wu M, McManus OB, Golden JE, Aubé J, Li M.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2013 Apr 15 [updated 2013 Nov 14].

6.

Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9.

Miller MR, Zou B, Shi J, Flaherty DP, Simpson DS, Yao T, Maki BE, Day VW, Douglas JT, Wu M, McManus OB, Golden JE, Aubé J, Li M.

Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-.
2012 Apr 16 [updated 2013 Feb 28].

7.

Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.

Yu H, Lin Z, Mattmann ME, Zou B, Terrenoire C, Zhang H, Wu M, McManus OB, Kass RS, Lindsley CW, Hopkins CR, Li M.

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8732-7. doi: 10.1073/pnas.1300684110. Epub 2013 May 6.

8.

KCNQ2/3 openers show differential selectivity and site of action across multiple KCNQ channels.

Zhang D, Thimmapaya R, Zhang XF, Anderson DJ, Baranowski JL, Scanio M, Perez-Medrano A, Peddi S, Wang Z, Patel JR, DeGoey DA, Gopalakrishnan M, Honore P, Yao BB, Surowy CS.

J Neurosci Methods. 2011 Aug 30;200(1):54-62. doi: 10.1016/j.jneumeth.2011.06.014. Epub 2011 Jun 23.

PMID:
21723881
9.

KCNQ1 channels sense small changes in cell volume.

Grunnet M, Jespersen T, MacAulay N, Jørgensen NK, Schmitt N, Pongs O, Olesen SP, Klaerke DA.

J Physiol. 2003 Jun 1;549(Pt 2):419-27. Epub 2003 Apr 17.

10.

Discovery of a novel activator of KCNQ1-KCNE1 K channel complexes.

Mruk K, Kobertz WR.

PLoS One. 2009;4(1):e4236. doi: 10.1371/journal.pone.0004236. Epub 2009 Jan 21.

11.

Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels.

Hadley JK, Noda M, Selyanko AA, Wood IC, Abogadie FC, Brown DA.

Br J Pharmacol. 2000 Feb;129(3):413-5.

12.

Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

Pattnaik BR, Hughes BA.

Am J Physiol Cell Physiol. 2012 Mar 1;302(5):C821-33. doi: 10.1152/ajpcell.00269.2011. Epub 2011 Nov 30.

13.

The human ether-a-go-go-related gene activator NS1643 enhances epilepsy-associated KCNQ channels.

Li P, Chen X, Zhang Q, Zheng Y, Jiang H, Yang H, Gao Z.

J Pharmacol Exp Ther. 2014 Dec;351(3):596-604. doi: 10.1124/jpet.114.217703. Epub 2014 Sep 17.

14.
15.

Potent KCNQ2/3-specific channel activator suppresses in vivo epileptic activity and prevents the development of tinnitus.

Kalappa BI, Soh H, Duignan KM, Furuya T, Edwards S, Tzingounis AV, Tzounopoulos T.

J Neurosci. 2015 Jun 10;35(23):8829-42. doi: 10.1523/JNEUROSCI.5176-14.2015.

16.

Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome.

Seebohm G, Scherer CR, Busch AE, Lerche C.

J Biol Chem. 2001 Apr 27;276(17):13600-5. Epub 2001 Jan 17.

17.

The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes.

Panaghie G, Abbott GW.

J Gen Physiol. 2007 Feb;129(2):121-33. Epub 2007 Jan 16.

18.

Novel KCNQ2 channel activators discovered using fluorescence-based and automated patch-clamp-based high-throughput screening techniques.

Yue JF, Qiao GH, Liu N, Nan FJ, Gao ZB.

Acta Pharmacol Sin. 2016 Jan;37(1):105-10. doi: 10.1038/aps.2015.142.

19.

The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site.

Padilla K, Wickenden AD, Gerlach AC, McCormack K.

Neurosci Lett. 2009 Nov 13;465(2):138-42. doi: 10.1016/j.neulet.2009.08.071. Epub 2009 Sep 3.

PMID:
19733209
20.

KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways.

Brueggemann LI, Haick JM, Neuburg S, Tate S, Randhawa D, Cribbs LL, Byron KL.

Am J Physiol Lung Cell Mol Physiol. 2014 Mar 15;306(6):L476-86. doi: 10.1152/ajplung.00253.2013. Epub 2014 Jan 17.

Supplemental Content

Support Center