Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

High altitude adaptation in Daghestani populations from the Caucasus.

Pagani L, Ayub Q, MacArthur DG, Xue Y, Baillie JK, Chen Y, Kozarewa I, Turner DJ, Tofanelli S, Bulayeva K, Kidd K, Paoli G, Tyler-Smith C.

Hum Genet. 2012 Mar;131(3):423-33. doi: 10.1007/s00439-011-1084-8. Epub 2011 Sep 9.

2.

Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.

Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López Herráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD.

PLoS Genet. 2010 Sep 9;6(9):e1001116. doi: 10.1371/journal.pgen.1001116.

3.

Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations.

Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP.

Mol Biol Evol. 2012 Nov;29(11):3359-70. doi: 10.1093/molbev/mss144. Epub 2012 May 23.

PMID:
22628534
4.

Genetic evidence for high-altitude adaptation in Tibet.

Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R.

Science. 2010 Jul 2;329(5987):72-5. doi: 10.1126/science.1189406. Epub 2010 May 13.

5.

Will blood tell? Three recent articles demonstrate genetic selection in Tibetans.

Rupert J.

High Alt Med Biol. 2010 Winter;11(4):307-8. doi: 10.1089/ham.2010.1052. No abstract available.

PMID:
21190496
6.

Metabolic insight into mechanisms of high-altitude adaptation in Tibetans.

Ge RL, Simonson TS, Cooksey RC, Tanna U, Qin G, Huff CD, Witherspoon DJ, Xing J, Zhengzhong B, Prchal JT, Jorde LB, McClain DA.

Mol Genet Metab. 2012 Jun;106(2):244-7. doi: 10.1016/j.ymgme.2012.03.003. Epub 2012 Mar 17.

7.

Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation.

Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X, Cui C, Zhang H, Li M, Zhang Y, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu T, Chen H, Shi H, Qi X, Su B.

Mol Biol Evol. 2013 Aug;30(8):1889-98. doi: 10.1093/molbev/mst090. Epub 2013 May 10.

PMID:
23666208
8.

Evolution. Genes for high altitudes.

Storz JF.

Science. 2010 Jul 2;329(5987):40-1. doi: 10.1126/science.1192481. No abstract available.

9.

Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes.

Udpa N, Ronen R, Zhou D, Liang J, Stobdan T, Appenzeller O, Yin Y, Du Y, Guo L, Cao R, Wang Y, Jin X, Huang C, Jia W, Cao D, Guo G, Claydon VE, Hainsworth R, Gamboa JL, Zibenigus M, Zenebe G, Xue J, Liu S, Frazer KA, Li Y, Bafna V, Haddad GG.

Genome Biol. 2014 Feb 20;15(2):R36. doi: 10.1186/gb-2014-15-2-r36.

10.

[Association between six single nucleotide polymorphisms of EGLN1 gene and adaptation to high-altitude hypoxia].

Li Q, Liu SY, Lin KQ, Sun H, Yu L, Huang XQ, Chu JY, Yang ZQ.

Yi Chuan. 2013 Aug;35(8):992-8. Chinese.

PMID:
23956087
11.

Genetic determinants of Tibetan high-altitude adaptation.

Simonson TS, McClain DA, Jorde LB, Prchal JT.

Hum Genet. 2012 Apr;131(4):527-33. doi: 10.1007/s00439-011-1109-3. Epub 2011 Nov 9. Review.

PMID:
22068265
12.

Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era.

Petousi N, Robbins PA.

J Appl Physiol (1985). 2014 Apr 1;116(7):875-84. doi: 10.1152/japplphysiol.00605.2013. Epub 2013 Nov 7. Review.

13.

Combined genetic effects of EGLN1 and VWF modulate thrombotic outcome in hypoxia revealed by Ayurgenomics approach.

Aggarwal S, Gheware A, Agrawal A, Ghosh S, Prasher B, Mukerji M; Indian Genome Variation Consortium.

J Transl Med. 2015 Jun 6;13:184. doi: 10.1186/s12967-015-0542-9.

14.

The genetic architecture of adaptations to high altitude in Ethiopia.

Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A.

PLoS Genet. 2012;8(12):e1003110. doi: 10.1371/journal.pgen.1003110. Epub 2012 Dec 6.

15.
16.

'ome on the Range: altitude adaptation, positive selection, and Himalayan genomics.

MacInnis MJ, Rupert JL.

High Alt Med Biol. 2011 Summer;12(2):133-9. doi: 10.1089/ham.2010.1090. Review.

PMID:
21718161
17.

EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda.

Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Pasha MA, Ghosh S, Agrawal A; Indian Genome Variation Consortium, Prasher B, Mukerji M.

Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18961-6. doi: 10.1073/pnas.1006108107. Epub 2010 Oct 18.

18.

A genetic mechanism for Tibetan high-altitude adaptation.

Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG Jr, Koivunen P, Prchal JT.

Nat Genet. 2014 Sep;46(9):951-6. doi: 10.1038/ng.3067. Epub 2014 Aug 17.

19.

Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations.

Huerta-Sánchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R, Antao T, Cardona A, Montgomery HE, Cavalleri GL, Robbins PA, Weale ME, Bradman N, Bekele E, Kivisild T, Tyler-Smith C, Nielsen R.

Mol Biol Evol. 2013 Aug;30(8):1877-88. doi: 10.1093/molbev/mst089. Epub 2013 May 10.

20.

Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives.

Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Almasy LA, Decker MJ, Worthman CM, Goldstein MC, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C.

Am J Phys Anthropol. 1997 Dec;104(4):427-47.

PMID:
9453694

Supplemental Content

Support Center