Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Thermal Considerations for the Design of an Implanted Cortical Brain–Machine Interface (BMI).

Wolf PD.

In: Reichert WM, editor. Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment. Boca Raton (FL): CRC Press/Taylor & Francis; 2008. Chapter 3.

2.

Electromagnetic power absorption and temperature changes due to brain machine interface operation.

Ibrahim TS, Abraham D, Rennaker RL.

Ann Biomed Eng. 2007 May;35(5):825-34. Epub 2007 Mar 2.

PMID:
17334681
3.

Current challenges to the clinical translation of brain machine interface technology.

Lu CW, Patil PG, Chestek CA.

Int Rev Neurobiol. 2012;107:137-60. doi: 10.1016/B978-0-12-404706-8.00008-5. Review.

PMID:
23206681
4.

Conceptual and Technical Approaches to Human Neural Ensemble Recordings.

Turner DA, Patil PG, Nicolelis MAL.

In: Nicolelis MAL, editor. Methods for Neural Ensemble Recordings. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2008. Chapter 12.

5.

Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G.

J Vis Exp. 2012 Jun 26;(64). pii: 3993. doi: 10.3791/3993.

6.

Enhanced Functional Outcome from Traumatic Brain Injury with Brain–Machine Interface Neuromodulation: Neuroprosthetic Scaling in Relation to Injury Severity.

Turner DA.

In: Laskowitz D, Grant G, editors. Translational Research in Traumatic Brain Injury. Boca Raton (FL): CRC Press/Taylor and Francis Group; 2016. Chapter 18.

7.

Feasibility study for future implantable neural-silicon interface devices.

Al-Armaghany A, Yu B, Mak T, Tong KF, Sun Y.

Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3009-15. doi: 10.1109/IEMBS.2011.6090825.

PMID:
22254974
8.

Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.

Dethier J, Nuyujukian P, Ryu SI, Shenoy KV, Boahen K.

J Neural Eng. 2013 Jun;10(3):036008. doi: 10.1088/1741-2560/10/3/036008. Epub 2013 Apr 10.

9.

Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

Matsushita K, Hirata M, Suzuki T, Ando H, Ota Y, Sato F, Morris S, Yoshida T, Matsuki H, Yoshimine T.

Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1867-70. doi: 10.1109/EMBC.2013.6609888.

PMID:
24110075
10.

[The progress in researches on biocompatibility for direct brain-machine interface].

Luo P, Xie G, Jiang Z.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Dec;24(6):1416-8. Review. Chinese.

PMID:
18232506
11.

[Brain-machine interface--current status and future prospects].

Ushiba J.

Brain Nerve. 2010 Feb;62(2):101-11. Review. Japanese.

PMID:
20192030
12.

Brain-machine interface (BMI) in paralysis.

Chaudhary U, Birbaumer N, Curado MR.

Ann Phys Rehabil Med. 2015 Feb;58(1):9-13. doi: 10.1016/j.rehab.2014.11.002. Epub 2015 Jan 8.

13.

Cortical neuroprosthetics from a clinical perspective.

Tsu AP, Burish MJ, GodLove J, Ganguly K.

Neurobiol Dis. 2015 Nov;83:154-60. doi: 10.1016/j.nbd.2015.07.015. Epub 2015 Aug 5. Review.

14.

Air cleaning technologies: an evidence-based analysis.

Health Quality Ontario.

Ont Health Technol Assess Ser. 2005;5(17):1-52. Epub 2005 Nov 1.

15.

Performance of a Computational Model of the Mammalian Olfactory System.

Benjaminsson S, Herman P, Lansner A.

In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 6.

16.
17.

Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.

Hannan MA, Hussein HA, Mutashar S, Samad SA, Hussain A.

Sensors (Basel). 2014 Dec 11;14(12):23843-70. doi: 10.3390/s141223843. Review.

18.

A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

Boi F, Moraitis T, De Feo V, Diotalevi F, Bartolozzi C, Indiveri G, Vato A.

Front Neurosci. 2016 Dec 9;10:563. doi: 10.3389/fnins.2016.00563. eCollection 2016.

19.
20.

Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information.

Morioka H, Kanemura A, Morimoto S, Yoshioka T, Oba S, Kawanabe M, Ishii S.

Neuroimage. 2014 Apr 15;90:128-39. doi: 10.1016/j.neuroimage.2013.12.035. Epub 2013 Dec 27.

PMID:
24374077

Supplemental Content

Support Center