Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 230

1.

Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade.

Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J, Bitonti A.

J Immunol. 2007 Apr 15;178(8):5390-8.

2.

Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells.

Duan RS, Adikari SB, Huang YM, Link H, Xiao BG.

Neurobiol Dis. 2004 Jul;16(2):461-7.

PMID:
15193302
3.

In vivo effects of neonatal administration of antiidiotype antibodies on experimental autoimmune myasthenia gravis.

Verschuuren JJ, Graus YM, Van Breda Vriesman PJ, Tzartos S, De Baets MH.

Autoimmunity. 1991;10(3):173-9.

PMID:
1756222
4.
5.

Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis.

Goluszko E, Deng C, Poussin MA, Christadoss P.

J Neuroimmunol. 2002 Jan;122(1-2):85-93.

PMID:
11777546
6.

Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor.

Yi HJ, Chae CS, So JS, Tzartos SJ, Souroujon MC, Fuchs S, Im SH.

Mol Immunol. 2008 Nov;46(1):192-201. doi: 10.1016/j.molimm.2008.08.264. Epub 2008 Sep 16.

PMID:
18799218
7.

[Modulation of experimental myasthenia gravis by IVIg].

Berrih-Aknin S, Aissaoui A, Yamamoto M, Kaveri SV.

Ann Med Interne (Paris). 2000 May;151 Suppl 1:1S25-9. French.

PMID:
10896985
8.

The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis.

Xiao BG, Duan RS, Zhu WH, Lu CZ.

Cell Immunol. 2006 Jun;241(2):95-101. Epub 2006 Sep 26.

PMID:
17005165
10.

Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.

Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, Yamaguchi T.

J Immunol. 2010 Feb 15;184(4):1968-76. doi: 10.4049/jimmunol.0903296. Epub 2010 Jan 18.

12.
13.

Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease.

Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC.

Int Immunol. 2006 Dec;18(12):1759-69. Epub 2006 Oct 31.

PMID:
17077181
14.
16.
17.

Lymphotoxin-alpha deficiency completely protects C57BL/6 mice from developing clinical experimental autoimmune myasthenia gravis.

Goluszko E, Hjelmström P, Deng C, Poussin MA, Ruddle NH, Christadoss P.

J Neuroimmunol. 2001 Feb 1;113(1):109-18.

PMID:
11137582
18.

LF 15-0195 prevents from the development and inhibits the progression of rat experimental autoimmune myasthenia gravis.

Duplan V, Dutartre P, Druet P, Saoudi A.

J Neuroimmunol. 2002 Aug;129(1-2):115-24.

PMID:
12161027
19.

[Antibodies in myasthenia gravis].

Eymard B.

Rev Neurol (Paris). 2009 Feb;165(2):137-43. doi: 10.1016/j.neurol.2008.11.020. Epub 2009 Jan 21. Review. French.

PMID:
19162288
20.

Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.

Wang HB, Shi FD, Li H, van der Meide PH, Ljunggren HG, Link H.

Clin Immunol. 2000 May;95(2):156-62.

PMID:
10779409

Supplemental Content

Support Center