Format

Send to

Choose Destination
  • Filters activated: Field: Title Word. Clear all
Stem Cells. 2007 Oct;25(10):2648-59. Epub 2007 Jul 5.

Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis.

Author information

1
161 HMRC, University of Alberta, 113 Street & 87 Avenue, Edmonton, Alberta T6G 2E1, Canada. yaojiong@ualberta.ca

Abstract

Although chronic wounds are common, treatment for these disabling conditions remains limited and largely ineffective. In this study, we examined the benefit of bone marrow-derived mesenchymal stem cells (BM-MSCs) in wound healing. Using an excisional wound splinting model, we showed that injection around the wound and application to the wound bed of green fluorescence protein (GFP)(+) allogeneic BM-MSCs significantly enhanced wound healing in normal and diabetic mice compared with that of allogeneic neonatal dermal fibroblasts or vehicle control medium. Fluorescence-activated cell sorting analysis of cells derived from the wound for GFP-expressing BM-MSCs indicated engraftments of 27% at 7 days, 7.6% at 14 days, and 2.5% at 28 days of total BM-MSCs administered. BM-MSC-treated wounds exhibited significantly accelerated wound closure, with increased re-epithelialization, cellularity, and angiogenesis. Notably, BM-MSCs, but not CD34(+) bone marrow cells in the wound, expressed the keratinocyte-specific protein keratin and formed glandular structures, suggesting a direct contribution of BM-MSCs to cutaneous regeneration. Moreover, BM-MSC-conditioned medium promoted endothelial cell tube formation. Real-time polymerase chain reaction and Western blot analysis revealed high levels of vascular endothelial growth factor and angiopoietin-1 in BM-MSCs and significantly greater amounts of the proteins in BM-MSC-treated wounds. Thus, our data suggest that BM-MSCs promote wound healing through differentiation and release of proangiogenic factors. Disclosure of potential conflicts of interest is found at the end of this article.

PMID:
17615264
DOI:
10.1634/stemcells.2007-0226
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center