Format

Send to

Choose Destination
Nature. 2000 Mar 16;404(6775):293-6.

An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.

Author information

1
Genetica, Inc., Cold Spring Harbor, New York 11724, USA.

Abstract

In a diverse group of organisms that includes Caenorhabditis elegans, Drosophila, planaria, hydra, trypanosomes, fungi and plants, the introduction of double-stranded RNAs inhibits gene expression in a sequence-specific manner. These responses, called RNA interference or post-transcriptional gene silencing, may provide anti-viral defence, modulate transposition or regulate gene expression. We have taken a biochemical approach towards elucidating the mechanisms underlying this genetic phenomenon. Here we show that 'loss-of-function' phenotypes can be created in cultured Drosophila cells by transfection with specific double-stranded RNAs. This coincides with a marked reduction in the level of cognate cellular messenger RNAs. Extracts of transfected cells contain a nuclease activity that specifically degrades exogenous transcripts homologous to transfected double-stranded RNA. This enzyme contains an essential RNA component. After partial purification, the sequence-specific nuclease co-fractionates with a discrete, approximately 25-nucleotide RNA species which may confer specificity to the enzyme through homology to the substrate mRNAs.

PMID:
10749213
DOI:
10.1038/35005107
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center