Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8145-8.

Evolutionary consequences of food chain length in kelp forest communities.

Author information

1
School of Biological Sciences, University of New South Wales, Kensington, New South Wales, Australia.

Abstract

Kelp forests are strongly influenced by macroinvertebrate grazing on fleshy macroalgae. In the North Pacific Ocean, sea otter predation on macroinvertebrates substantially reduces the intensity of herbivory on macroalgae. Temperate Australasia, in contrast, has no known predator of comparable influence. These ecological and biogeographic patterns led us to predict that (i) the intensity of herbivory should be greater in temperate Australasia than in the North Pacific Ocean; thus (ii) Australasian seaweeds have been under stronger selection to evolve chemical defenses and (iii) Australasian herbivores have been more strongly selected to tolerate these compounds. We tested these predictions first by measuring rates of algal tissue loss to herbivory at several locations in Australasian and North Pacific kelp forests. There were significant differences in grazing rates among sea otter-dominated locations in the North Pacific (0-2% day-1), Australasia (5-7% day-1), and a North Pacific location lacking sea otters (80% day-1). The expectations that chronically high rates of herbivory in Australasia have selected for high concentrations of defensive secondary metabolites (phlorotannins) in brown algae and increased tolerance of these defenses in the herbivores also were supported. Phlorotannin concentrations in kelps and fucoids from Australasia were, on average, 5-6 times higher than those in a comparable suite of North Pacific algae, confirming earlier findings. Furthermore, feeding rates of Australasian herbivores were largely unaffected by phlorotannins, regardless of the compounds' regional source. North Pacific herbivores, in contrast, were consistently deterred by phlorotannins from both Australasia and the North Pacific. These findings suggest that top-level consumers, acting through food chains of various lengths, can strongly influence the ecology and evolution of plantherbivore interactions.

PMID:
11607573
PMCID:
PMC41112
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center