Format

Send to

Choose Destination
Bull Math Biol. 2013 Aug;75(8):1377-99. doi: 10.1007/s11538-013-9826-5. Epub 2013 Mar 15.

A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis.

Author information

1
Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, The Netherlands. josephine.daub@iee.unibe.ch

Abstract

Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.

PMID:
23494144
PMCID:
PMC3738846
DOI:
10.1007/s11538-013-9826-5
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center