Send to

Choose Destination
Eur J Pharmacol. 2007 Feb 28;557(2-3):221-9. Epub 2006 Nov 15.

The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells.

Author information

Institute of Biomedicine, University of León, 24071 León, Spain.


We examined the ability of the flavonoids quercetin and kaempferol to modulate inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and reactive C-protein (CRP) expression, and to induce changes in the nuclear factor kappa B (NF-kappaB) pathway in the human hepatocyte-derived cell line Chang Liver. Cells were incubated with a cytokine mixture supplemented with quercetin or kaempferol (5 to 200 micromol/l). Kaempferol produced a significant concentration-dependent decrease of iNOS, COX-2 and CRP protein level at all concentrations, but the percentage of inhibition induced by quercetin was reduced at high concentrations. Both flavonoids significantly inhibited mRNA level of iNOS, COX-2, and CRP. Inhibitory effects by quercetin and kaempferol were also observed on NF-kappaB activation and on protein concentration of the phosphorylated form of the inhibitor IkappaB alpha and of IKK (IkappaB kinase)alpha. The present study suggests that the modulation of iNOS, COX-2 and CRP by quercetin or kaempferol may contribute to the anti-inflammatory effects of these two structurally similar flavonoids in Chang Liver cells, via mechanisms likely to involve blockade of NF-kappaB activation and the resultant up-regulation of the pro-inflammatory genes. Our data also indicate that the minor structural differences between both compounds determine differences in their inhibitory capacity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center