Format

Send to

Choose Destination
Neurobiol Dis. 2012 Mar;45(3):962-72. doi: 10.1016/j.nbd.2011.12.015. Epub 2011 Dec 13.

ATP13A2 regulates mitochondrial bioenergetics through macroautophagy.

Author information

1
Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

Abstract

Mitochondrial dysfunction and autophagy are centrally implicated in Parkinson's disease (PD). Mutations in ATP13A2, which encodes a lysosomal P-type ATPase of unknown function, cause a rare, autosomal recessive parkinsonian syndrome. Lysosomes are essential for autophagy, and autophagic clearance of dysfunctional mitochondria represents an important element of mitochondrial quality control. In this study, we tested the hypothesis that loss of ATP13A2 function will affect mitochondrial function. Knockdown of ATP13A2 led to an increase in mitochondrial mass in primary mouse cortical neurons and in SH-SY5Y cells forced into mitochondrial dependence. ATP13A2-deficient cells exhibited increased oxygen consumption without a significant change in steady-state levels of ATP. Mitochondria in knockdown cells exhibited increased fragmentation and increased production of reactive oxygen species (ROS). Basal levels of the autophagosome marker LC3-II were not significantly changed, however, ATP13A2 knockdown cells exhibited decreased autophagic flux, associated with increased levels of phospho-mTOR, and resistance to autophagy induction by rapamycin. The effects of ATP13A2 siRNA on oxygen consumption, mitochondrial mass and ROS production could be mimicked by inhibiting autophagy induction using siRNA to Atg7. We propose that decreased autophagy associated with ATP13A2 deficiency affects mitochondrial quality control, resulting in increased ROS production. These data are the first to implicate loss of ATP13A2 function in mitochondrial maintenance and oxidative stress, lending further support to converging genetic and environmental evidence for mitochondrial dysregulation in PD pathogenesis.

PMID:
22198378
PMCID:
PMC3291101
DOI:
10.1016/j.nbd.2011.12.015
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center