Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15792-7. doi: 10.1073/pnas.1111331108. Epub 2011 Sep 6.

Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis.

Author information

1
Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Abstract

Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are synthesized within cardiac myocytes and play key roles in modulating cardiovascular signaling. Cardiac myocytes contain both the endothelial (eNOS) and neuronal (nNOS) NO synthases, but the differential roles of these NOS isoforms and the interplay of reactive oxygen species and reactive nitrogen species in cardiac signaling pathways are poorly understood. Using a recently developed NO chemical sensor [Cu(2)(FL2E)] to study adult cardiac myocytes from wild-type, eNOS(null), and nNOS(null) mice, we discovered that physiological concentrations of H(2)O(2) activate eNOS but not nNOS. H(2)O(2)-stimulated eNOS activation depends on phosphorylation of both the AMP-activated protein kinase and kinase Akt, and leads to the robust phosphorylation of eNOS. Cardiac myocytes isolated from mice infected with lentivirus expressing the recently developed H(2)O(2) biosensor HyPer2 show marked H(2)O(2) synthesis when stimulated by angiotensin II, but not following β-adrenergic receptor activation. We discovered that the angiotensin-II-promoted increase in cardiac myocyte contractility is dependent on H(2)O(2), whereas β-adrenergic contractile responses occur independently of H(2)O(2) signaling. These studies establish differential roles for H(2)O(2) in control of cardiac contractility and receptor-dependent NOS activation in the heart, and they identify new points for modulation of NO signaling responses by oxidant stress.

PMID:
21896719
PMCID:
PMC3179126
DOI:
10.1073/pnas.1111331108
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center