Format

Send to

Choose Destination
Pflugers Arch. 2002 Mar;443(5-6):822-8. Epub 2001 Dec 7.

The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse.

Author information

1
IPMC, CNRS, 660 route des Lucioles, 06560 Sophia-Antipolis, France. warth@ipmc.cnrs.fr

Abstract

KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.

PMID:
11889581
DOI:
10.1007/s00424-001-0751-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center