Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 5345

1.

Toxicity mechanism-based prodrugs: glutathione-dependent bioactivation as a strategy for anticancer prodrug design.

Zhang XY, Elfarra AA.

Expert Opin Drug Discov. 2018 Aug 13:1-10. doi: 10.1080/17460441.2018.1508207. [Epub ahead of print]

PMID:
30101640
2.
3.

Trichloroethylene-induced hypersensitivity dermatitis was associated with hepatic metabolic enzyme genes and immune-related genes.

Xu X, Ke Y, Yuan J, Liu Y, Li X, Wu D, Qin X, Mao J, Mao K.

Toxicol Res (Camb). 2016 Jan 22;5(2):633-640. doi: 10.1039/c5tx00400d. eCollection 2016 Mar 1.

4.

Dehalogenation of trichloroethylene vapors by partially saturated zero-valent iron.

Zingaretti D, Verginelli I, Baciocchi R.

Sci Total Environ. 2018 Aug 3;647:682-689. doi: 10.1016/j.scitotenv.2018.08.011. [Epub ahead of print]

PMID:
30092524
5.

Analytical Methods Impact Estimates of Trichloroethylene's Glutathione Conjugation and Risk Assessment.

Zhang F, Marty S, Budinsky R, Bartels M, Pottenger LH, Bus J, Bevan C, Erskine T, Clark A, Holzheuer B, Markham D.

Toxicol Lett. 2018 Aug 3. pii: S0378-4274(18)31490-5. doi: 10.1016/j.toxlet.2018.07.006. [Epub ahead of print]

PMID:
30081224
6.

Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains.

Luo YS, Hsieh NH, Soldatow VY, Chiu WA, Rusyn I.

Toxicology. 2018 Jul 24;409:33-43. doi: 10.1016/j.tox.2018.07.012. [Epub ahead of print]

PMID:
30053492
7.

Toxic Effects of Trichloroethylene on Rat Neuroprogenitor Cells.

Salama MM, El-Naggar DA, Abdel-Rahman RH, Elhak SAG.

Front Pharmacol. 2018 Jul 10;9:741. doi: 10.3389/fphar.2018.00741. eCollection 2018.

8.

Biotoxicity of Water-Soluble UV Photodegradation Products for 10 Typical Gaseous VOCs.

Sun Z, Kang IS, Wu Q, Xi J, Hu H.

Int J Environ Res Public Health. 2018 Jul 18;15(7). pii: E1520. doi: 10.3390/ijerph15071520.

9.

Enhanced degradation of trichloroethylene in oxidative environment by nZVI/PDA functionalized rGO catalyst.

Gu M, Sui Q, Farooq U, Zhang X, Qiu Z, Lyu S.

J Hazard Mater. 2018 Jul 9;359:157-165. doi: 10.1016/j.jhazmat.2018.07.013. [Epub ahead of print]

PMID:
30016761
10.

[Trichloroethylene-induced abnormal methylation on promoter region of SET in hepatic L-02 cells].

Ruan JW, Chen ZH, Lu WX, Zhang H, Ren XH, Huang XF, Yuan JH, Liu YG, Liu JJ.

Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2018 Mar 20;36(3):165-168. doi: 10.3760/cma.j.issn.1001-9391.2018.03.002. Chinese.

PMID:
29996214
11.

Acute toxic encephalopathy induced by occupational exposure to 1,2-dichloropropane.

Kwak KM, Jeong KS, Shin DH, Choi WJ, Kim HS, Kang SK.

Ind Health. 2018 Jul 3. doi: 10.2486/indhealth.2018-0118. [Epub ahead of print]

12.

[Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Baiyangdian Lake].

Gao QS, Zhao YH, Jiao LX, Tian ZQ, Yang L, Yang SW, Cui ZD, Hao ZF.

Huan Jing Ke Xue. 2018 May 8;39(5):2048-2055. doi: 10.13227/j.hjkx.201710232. Chinese.

PMID:
29965504
13.

Pneumatosis cystoides intestinalis: six case reports and a review of the literature.

Wang YJ, Wang YM, Zheng YM, Jiang HQ, Zhang J.

BMC Gastroenterol. 2018 Jun 28;18(1):100. doi: 10.1186/s12876-018-0794-y.

14.

Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective.

Barnett LMA, Cummings BS.

Toxicol Sci. 2018 Aug 1;164(2):379-390. doi: 10.1093/toxsci/kfy159.

PMID:
29939355
15.

Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles.

Yu Z, Smith ME, Zhang J, Zhou Y, Zhang P.

Mikrochim Acta. 2018 Jun 18;185(7):330. doi: 10.1007/s00604-018-2870-y.

PMID:
29915873
16.

Investigating the efficiency of microscale zero valent iron-based in situ reactive zone (mZVI-IRZ) for TCE removal in fresh and saline groundwater.

Xin J, Tang F, Yan J, La C, Zheng X, Liu W.

Sci Total Environ. 2018 Jun 1;626:638-649. doi: 10.1016/j.scitotenv.2018.01.115. Epub 2018 Feb 19.

PMID:
29898552
17.

Metabolism and Toxicity of Trichloroethylene and Tetrachloroethylene in Cytochrome P450 2E1 Knockout and Humanized Transgenic Mice.

Luo YS, Furuya S, Soldatov VY, Kosyk O, Yoo HS, Fukushima H, Lewis L, Iwata Y, Rusyn I.

Toxicol Sci. 2018 Aug 1;164(2):489-500. doi: 10.1093/toxsci/kfy099.

PMID:
29897530
18.

FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO₂/Si Multilayer Structure.

Aslam MZ, Jeoti V, Karuppanan S, Malik AF, Iqbal A.

Sensors (Basel). 2018 May 24;18(6). pii: E1687. doi: 10.3390/s18061687.

19.

Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application.

Wei CJ, Xie YF, Wang XM, Li XY.

Chemosphere. 2018 Sep;207:715-724. doi: 10.1016/j.chemosphere.2018.05.128. Epub 2018 May 23.

PMID:
29859484
20.

Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei.

Hu R, Liu G, Zhang H, Xue H, Wang X.

Ecotoxicol Environ Saf. 2018 Sep 30;160:301-307. doi: 10.1016/j.ecoenv.2018.05.056. Epub 2018 May 29.

PMID:
29857234

Supplemental Content

Loading ...
Support Center