Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 921

1.

Comparative studies on the interaction between biogenic polyamines and bovine intestinal alkaline phosphatases: spectroscopic and theoretical approaches.

Salehian P, Shareghi B, Hosseini-Koupaei M.

J Biol Phys. 2019 Feb 7. doi: 10.1007/s10867-018-9517-4. [Epub ahead of print]

PMID:
30734136
2.

Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method.

Jaroszewicz J, Idaszek J, Choinska E, Szlazak K, Hyc A, Osiecka-Iwan A, Swieszkowski W, Moskalewski S.

Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:319-328. doi: 10.1016/j.msec.2018.11.027. Epub 2018 Nov 22.

PMID:
30606539
3.

Ontogeny of alkaline phosphatase activity in infant intestines and breast milk.

Yang Y, Rader E, Peters-Carr M, Bent RC, Smilowitz JT, Guillemin K, Rader B.

BMC Pediatr. 2019 Jan 3;19(1):2. doi: 10.1186/s12887-018-1379-1.

4.

Evaluation of Intestinal Damage Biomarkers in Calves with Atresia Coli.

Yildiz R, Ok M, Ider M, Aydogdu U, Naseri A, Parlak K, Gulersoy E.

J Vet Res. 2018 Dec 10;62(3):379-384. doi: 10.2478/jvetres-2018-0054. eCollection 2018 Sep.

5.

Lower expression of endogenous intestinal alkaline phosphatase may predict worse prognosis in patients with Crohn's disease.

Park SY, Kim JY, Lee SM, Chung JO, Seo JH, Kim S, Kim DH, Park CH, Ju JK, Joo YE, Lee JH, Kim HS, Choi SK, Rew JS.

BMC Gastroenterol. 2018 Dec 17;18(1):188. doi: 10.1186/s12876-018-0904-x.

6.

Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture.

Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP.

Dis Model Mech. 2018 Nov 28;11(12). pii: dmm034520. doi: 10.1242/dmm.034520.

7.

ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestine.

Moreno-Olivas F, Tako E, Mahler GJ.

Food Chem Toxicol. 2019 Feb;124:112-127. doi: 10.1016/j.fct.2018.11.048. Epub 2018 Nov 29.

PMID:
30503572
8.

Loss of Intestinal Alkaline Phosphatase Leads to Distinct Chronic Changes in Bone Phenotype.

Kuehn F, Adiliaghdam F, Hamarneh SR, Vasan R, Liu E, Liu Y, Ramirez JM, Hoda RS, Munoz AR, Ko FC, Armanini M, Brooks DJ, Bouxsein ML, Demay MB, Hodin RA.

J Surg Res. 2018 Dec;232:325-331. doi: 10.1016/j.jss.2018.06.061. Epub 2018 Jul 18.

PMID:
30463736
9.

Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice.

Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, Hao L, Bhan AK, Kang JX.

Microbiome. 2018 Nov 13;6(1):205. doi: 10.1186/s40168-018-0587-0.

11.

The effect of the branched-chain amino acids on the <i>in-vitro</i> activity of bovine intestinal alkaline phosphatase.

Boyd GW, Drew M, Ward S, Baird M, Connaboy C, Graham SM.

Appl Physiol Nutr Metab. 2018 Nov 6. doi: 10.1139/apnm-2018-0449. [Epub ahead of print]

PMID:
30398915
12.

Ameliorative effect of silymarin against linezolid-induced hepatotoxicity in methicillin-resistant Staphylococcus aureus (MRSA) infected Wistar rats.

Vivekanandan L, Sheik H, Singaravel S, Thangavel S.

Biomed Pharmacother. 2018 Dec;108:1303-1312. doi: 10.1016/j.biopha.2018.09.133. Epub 2018 Oct 4.

13.

Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets.

Wang W, Van Noten N, Degroote J, Romeo A, Vermeir P, Michiels J.

J Anim Physiol Anim Nutr (Berl). 2019 Jan;103(1):231-241. doi: 10.1111/jpn.12999. Epub 2018 Oct 8.

PMID:
30298533
14.

Hybrid compounds from chalcone and 1,2-benzothiazine pharmacophores as selective inhibitors of alkaline phosphatase isozymes.

Ashraf A, Ejaz SA, Rahman SU, Siddiqui WA, Arshad MN, Lecka J, Sévigny J, Zayed MEM, Asiri AM, Iqbal J, Hartinger CG, Hanif M.

Eur J Med Chem. 2018 Nov 5;159:282-291. doi: 10.1016/j.ejmech.2018.09.063. Epub 2018 Sep 26.

PMID:
30296687
15.

The Gut-Kidney Axis: Putative Interconnections Between Gastrointestinal and Renal Disorders.

Lehto M, Groop PH.

Front Endocrinol (Lausanne). 2018 Sep 19;9:553. doi: 10.3389/fendo.2018.00553. eCollection 2018. Review.

16.

A Role of Intestinal Alkaline Phosphatase 3 (Akp3) in Inorganic Phosphate Homeostasis.

Sasaki S, Segawa H, Hanazaki A, Kirino R, Fujii T, Ikuta K, Noguchi M, Sasaki S, Koike M, Tanifuji K, Shiozaki Y, Kaneko I, Tatsumi S, Shimohata T, Kawai Y, Narisawa S, Millán JL, Miyamoto KI.

Kidney Blood Press Res. 2018;43(5):1409-1424. doi: 10.1159/000493379. Epub 2018 Sep 13.

17.

Self-emulsifying drug delivery systems changing their zeta potential via a flip-flop mechanism.

Salimi E, Le-Vinh B, Zahir-Jouzdani F, Matuszczak B, Ghaee A, Bernkop-Schnürch A.

Int J Pharm. 2018 Oct 25;550(1-2):200-206. doi: 10.1016/j.ijpharm.2018.08.046. Epub 2018 Aug 24.

PMID:
30149127
18.

Loss of MYO5B Leads to Reductions in Na+ Absorption With Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes.

Engevik AC, Kaji I, Engevik MA, Meyer AR, Weis VG, Goldstein A, Hess MW, Müller T, Koepsell H, Dudeja PK, Tyska M, Huber LA, Shub MD, Ameen N, Goldenring JR.

Gastroenterology. 2018 Dec;155(6):1883-1897.e10. doi: 10.1053/j.gastro.2018.08.025. Epub 2018 Aug 23.

PMID:
30144427
19.

Adiposity and metabolic health in mice deficient in intestinal alkaline phosphatase.

Vercalsteren E, Vranckx C, Lijnen HR, Hemmeryckx B, Scroyen I.

Adipocyte. 2018;7(3):149-155. doi: 10.1080/21623945.2018.1493899. Epub 2018 Aug 10.

PMID:
30064292
20.

Intestine-specific expression of human chimeric intestinal alkaline phosphatase attenuates Western diet-induced barrier dysfunction and glucose intolerance.

Ghosh SS, He H, Wang J, Korzun W, Yannie PJ, Ghosh S.

Physiol Rep. 2018 Jul;6(14):e13790. doi: 10.14814/phy2.13790.

Supplemental Content

Loading ...
Support Center