Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Nonlinear two-point boundary value problems: applications to a cholera epidemic model.

Chowdhury A, Tanveer S, Wang X.

Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190673. doi: 10.1098/rspa.2019.0673. Epub 2020 Feb 26.

PMID:
32201479
2.

On the use and error of approximation in the Domenico (1987) solution.

West MR, Kueper BH, Ungs MJ.

Ground Water. 2007 Mar-Apr;45(2):126-35.

PMID:
17335477
3.

Boundary value problems for hypergenic function vectors.

Zhang G, Li C, Xie Y.

J Inequal Appl. 2018;2018(1):132. doi: 10.1186/s13660-018-1725-8. Epub 2018 Jun 13.

5.
6.

Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions.

McFall KS, Mahan JR.

IEEE Trans Neural Netw. 2009 Aug;20(8):1221-33. doi: 10.1109/TNN.2009.2020735. Epub 2009 Jun 2.

PMID:
19497815
7.

Multiple positive solutions for nonlinear fractional boundary value problems.

Zhao D, Liu Y.

ScientificWorldJournal. 2013 Nov 6;2013:473828. doi: 10.1155/2013/473828. eCollection 2013.

8.

Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity.

Lee EC, Kelly MR Jr, Ochocki BM, Akinwumi SM, Hamre KES, Tien JH, Eisenberg MC.

J Theor Biol. 2017 May 7;420:68-81. doi: 10.1016/j.jtbi.2017.01.032. Epub 2017 Jan 24.

9.

Approximate series solution of nonlinear singular boundary value problems arising in physiology.

Singh R, Kumar J, Nelakanti G.

ScientificWorldJournal. 2014 Feb 20;2014:945872. doi: 10.1155/2014/945872. eCollection 2014.

10.

A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

Cengizci S, Atay MT, Eryılmaz A.

Springerplus. 2016 Mar 5;5:280. doi: 10.1186/s40064-016-1865-6. eCollection 2016.

11.

Wavelet Based Analytical Expressions to Steady State Biofilm Model Arising in Biochemical Engineering.

Padma S, Hariharan G.

J Membr Biol. 2016 Jun;249(3):221-8. doi: 10.1007/s00232-015-9861-2. Epub 2015 Dec 12.

PMID:
26661721
12.

Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion.

Yang J, Liang S, Zhang Y.

PLoS One. 2011;6(6):e21128. doi: 10.1371/journal.pone.0021128. Epub 2011 Jun 24. Erratum in: PLoS One. 2013;8(8). doi:1371/annotation/308a02cb-c4a8-46db-a785-b218f197bba3.

13.
14.

A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon.

Guo WJ, Ye M, Li XN, Meyer-Baese A, Zhang QM.

Math Biosci Eng. 2019 May 10;16(5):4107-4121. doi: 10.3934/mbe.2019204.

15.

Explicit error bounds for the α-quasi-periodic Helmholtz problem.

Lord NH, Mulholland AJ.

J Opt Soc Am A Opt Image Sci Vis. 2013 Oct 1;30(10):2111-23. doi: 10.1364/JOSAA.30.002111.

16.

Nature inspired computational technique for the numerical solution of nonlinear singular boundary value problems arising in physiology.

Malik SA, Qureshi IM, Amir M, Haq I.

ScientificWorldJournal. 2014 Feb 2;2014:837021. doi: 10.1155/2014/837021. eCollection 2014.

17.

Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions.

Hohn ME, Li B, Yang W.

J Math Anal Appl. 2015 May 1;425(1):212-233.

18.

Existence and Uniqueness of Positive Solution for Discrete Multipoint Boundary Value Problems.

Ma H, Ma H.

Int Sch Res Notices. 2014 Oct 28;2014:531978. doi: 10.1155/2014/531978. eCollection 2014.

19.

Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model.

Yamazaki K, Wang X.

Math Biosci Eng. 2017 Apr 1;14(2):559-579. doi: 10.3934/mbe.2017033.

20.

A hybrid collocation method for solving highly nonlinear boundary value problems.

Adewumi AO, Akindeinde SO, Aderogba AA, Ogundare BS.

Heliyon. 2020 Mar 13;6(3):e03553. doi: 10.1016/j.heliyon.2020.e03553. eCollection 2020 Mar.

Supplemental Content

Support Center