Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Differential Reorganization of SMA Subregions After Stroke: A Subregional Level Resting-State Functional Connectivity Study.

Liu H, Cai W, Xu L, Li W, Qin W.

Front Hum Neurosci. 2020 Feb 28;13:468. doi: 10.3389/fnhum.2019.00468. eCollection 2019.

2.

Resting State Functional Connectivity of the Supplementary Motor Area to Motor and Language Networks in Patients with Brain Tumors.

Bathla G, Gene MN, Peck KK, Jenabi M, Tabar V, Holodny AI.

J Neuroimaging. 2019 Jul;29(4):521-526. doi: 10.1111/jon.12624. Epub 2019 Apr 29.

PMID:
31034698
3.

Altered Functional Connectivity of Insular Subregions in Alzheimer's Disease.

Liu X, Chen X, Zheng W, Xia M, Han Y, Song H, Li K, He Y, Wang Z.

Front Aging Neurosci. 2018 Apr 11;10:107. doi: 10.3389/fnagi.2018.00107. eCollection 2018.

4.

The selective impairment of resting-state functional connectivity of the lateral subregion of the frontal pole in schizophrenia.

Zhou Y, Ma X, Wang D, Qin W, Zhu J, Zhuo C, Yu C.

PLoS One. 2015 Mar 6;10(3):e0119176. doi: 10.1371/journal.pone.0119176. eCollection 2015.

5.

Altered functional connectivity of cognitive-related cerebellar subregions in well-recovered stroke patients.

Li W, Han T, Qin W, Zhang J, Liu H, Li Y, Meng L, Ji X, Yu C.

Neural Plast. 2013;2013:452439. doi: 10.1155/2013/452439. Epub 2013 Jun 19.

6.

Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T.

Habas C.

Neuroradiology. 2010 Jan;52(1):47-59. doi: 10.1007/s00234-009-0572-1. Epub 2009 Jul 24.

PMID:
19629462
7.

Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.

Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW, Na DL, Kim SI, Saad ZS.

Neuroimage. 2010 Feb 1;49(3):2375-86. doi: 10.1016/j.neuroimage.2009.10.016. Epub 2009 Oct 23.

8.

Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Alzheimer's Disease.

Zheng W, Liu X, Song H, Li K, Wang Z.

Front Aging Neurosci. 2017 May 16;9:143. doi: 10.3389/fnagi.2017.00143. eCollection 2017.

9.

Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures.

Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, Yu C.

Neuroimage. 2012 Jul 16;61(4):1213-25. doi: 10.1016/j.neuroimage.2012.04.011. Epub 2012 Apr 14.

PMID:
22525876
10.

Functional and anatomical connectivity-based parcellation of human cingulate cortex.

Jin F, Zheng P, Liu H, Guo H, Sun Z.

Brain Behav. 2018 Aug;8(8):e01070. doi: 10.1002/brb3.1070. Epub 2018 Jul 24.

11.

Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area.

Vassal M, Charroud C, Deverdun J, Le Bars E, Molino F, Bonnetblanc F, Boyer A, Dutta A, Herbet G, Moritz-Gasser S, Bonafé A, Duffau H, de Champfleur NM.

J Neurosurg. 2017 Apr;126(4):1181-1190. doi: 10.3171/2016.4.JNS152484. Epub 2016 Jun 17.

PMID:
27315027
12.

Abnormal Resting-State Functional Connectivity of Insular Subregions and Disrupted Correlation with Working Memory in Adults with Attention Deficit/Hyperactivity Disorder.

Zhao Q, Li H, Yu X, Huang F, Wang Y, Liu L, Cao Q, Qian Q, Zang Y, Sun L, Wang Y.

Front Psychiatry. 2017 Oct 11;8:200. doi: 10.3389/fpsyt.2017.00200. eCollection 2017.

13.

Altered functional connectivity of the cingulate subregions in schizophrenia.

Wang D, Zhou Y, Zhuo C, Qin W, Zhu J, Liu H, Xu L, Yu C.

Transl Psychiatry. 2015 Jun 2;5:e575. doi: 10.1038/tp.2015.69.

14.

Abnormal Resting-State Functional Connectivity in Progressive Supranuclear Palsy and Corticobasal Syndrome.

Bharti K, Bologna M, Upadhyay N, Piattella MC, Suppa A, Petsas N, Giannì C, Tona F, Berardelli A, Pantano P.

Front Neurol. 2017 Jun 6;8:248. doi: 10.3389/fneur.2017.00248. eCollection 2017.

15.

Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

Xu H, Qin W, Chen H, Jiang L, Li K, Yu C.

PLoS One. 2014 Jan 8;9(1):e84729. doi: 10.1371/journal.pone.0084729. eCollection 2014.

16.

Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia.

Zhang M, Yang F, Fan F, Wang Z, Hong X, Tan Y, Tan S, Hong LE.

Neuroimage Clin. 2020 Feb 20;26:102218. doi: 10.1016/j.nicl.2020.102218. [Epub ahead of print]

17.

Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia.

Liu X, Zhuo C, Qin W, Zhu J, Xu L, Xu Y, Yu C.

Neuroimage Clin. 2016 Jun 1;11:789-795. doi: 10.1016/j.nicl.2016.05.021. eCollection 2016.

18.

Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke.

Hu J, Du J, Xu Q, Yang F, Zeng F, Dai XJ, Liu X, Lu G, Zhang Z.

Front Neurol. 2017 Jul 19;8:339. doi: 10.3389/fneur.2017.00339. eCollection 2017.

19.

Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.

Bajaj S, Butler AJ, Drake D, Dhamala M.

Neuroimage Clin. 2015 Jun 28;8:572-82. doi: 10.1016/j.nicl.2015.06.006. eCollection 2015.

20.

Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke.

Hannanu FF, Zeffiro TA, Lamalle L, Heck O, Renard F, Thuriot A, Krainik A, Hommel M, Detante O, Jaillard A; ISIS-HERMES Study Group.

Neuroimage Clin. 2017 Jan 26;14:518-529. doi: 10.1016/j.nicl.2017.01.023. eCollection 2017.

Supplemental Content

Support Center