Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

In silico Investigations of the Mode of Action of Novel Colchicine Derivatives Targeting β-Tubulin Isotypes: A Search for a Selective and Specific β-III Tubulin Ligand.

Pallante L, Rocca A, Klejborowska G, Huczynski A, Grasso G, Tuszynski JA, Deriu MA.

Front Chem. 2020 Feb 21;8:108. doi: 10.3389/fchem.2020.00108. eCollection 2020.

2.

Novel mutations involving βI-, βIIA-, or βIVB-tubulin isotypes with functional resemblance to βIII-tubulin in breast cancer.

Wang W, Zhang H, Wang X, Patterson J, Winter P, Graham K, Ghosh S, Lee JC, Katsetos CD, Mackey JR, Tuszynski JA, Wong GK, Ludueña RF.

Protoplasma. 2017 May;254(3):1163-1173. doi: 10.1007/s00709-016-1060-1. Epub 2016 Dec 9.

PMID:
27943021
3.

Characterization of the colchicine binding site on avian tubulin isotype betaVI.

Sharma S, Poliks B, Chiauzzi C, Ravindra R, Blanden AR, Bane S.

Biochemistry. 2010 Apr 6;49(13):2932-42. doi: 10.1021/bi100159p.

4.

Synthesis, antiproliferative activity and molecular docking of thiocolchicine urethanes.

Majcher U, Urbaniak A, Maj E, Moshari M, Delgado M, Wietrzyk J, Bartl F, Chambers TC, Tuszynski JA, Huczyński A.

Bioorg Chem. 2018 Dec;81:553-566. doi: 10.1016/j.bioorg.2018.09.004. Epub 2018 Sep 12.

PMID:
30248507
5.

Effect of CH-35, a novel anti-tumor colchicine analogue, on breast cancer cells overexpressing the βIII isotype of tubulin.

Yeh LC, Banerjee A, Prasad V, Tuszynski JA, Weis AL, Bakos T, Yeh IT, Ludueña RF, Lee JC.

Invest New Drugs. 2016 Feb;34(1):129-37. doi: 10.1007/s10637-015-0315-6. Epub 2015 Dec 21.

PMID:
26686345
6.

Antiproliferative Activity and Molecular Docking of Novel Double-Modified Colchicine Derivatives.

Majcher U, Klejborowska G, Moshari M, Maj E, Wietrzyk J, Bartl F, Tuszynski JA, Huczyński A.

Cells. 2018 Nov 1;7(11). pii: E192. doi: 10.3390/cells7110192.

7.

The roles of cys124 and ser239 in the functional properties of human betaIII tubulin.

Joe PA, Banerjee A, Ludueña RF.

Cell Motil Cytoskeleton. 2008 Jun;65(6):476-86. doi: 10.1002/cm.20274.

PMID:
18435451
8.
9.

Delineating the interaction of combretastatin A-4 with αβ tubulin isotypes present in drug resistant human lung carcinoma using a molecular modeling approach.

Kumbhar BV, Bhandare VV, Panda D, Kunwar A.

J Biomol Struct Dyn. 2020 Feb;38(2):426-438. doi: 10.1080/07391102.2019.1577174. Epub 2019 Mar 4.

PMID:
30831055
10.

Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes.

Kumbhar BV, Panda D, Kunwar A.

PLoS One. 2018 Mar 27;13(3):e0194934. doi: 10.1371/journal.pone.0194934. eCollection 2018.

11.

Structure-based approaches for the design of benzimidazole-2-carbamate derivatives as tubulin polymerization inhibitors.

Aguayo-Ortiz R, Cano-González L, Castillo R, Hernández-Campos A, Dominguez L.

Chem Biol Drug Des. 2017 Jul;90(1):40-51. doi: 10.1111/cbdd.12926. Epub 2017 Jan 30.

PMID:
28004475
12.

Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives.

Tseng CY, Mane JY, Winter P, Johnson L, Huzil T, Izbicka E, Luduena RF, Tuszynski JA.

Mol Cancer. 2010 May 30;9:131. doi: 10.1186/1476-4598-9-131.

13.

Elucidation of the anticancer potential and tubulin isotype-specific interactions of β-sitosterol.

Pradhan M, Suri C, Choudhary S, Naik PK, Lopus M.

J Biomol Struct Dyn. 2018 Jan;36(1):195-208. doi: 10.1080/07391102.2016.1271749. Epub 2016 Dec 29.

PMID:
27960611
14.

Synthesis and Biological Evaluation of Novel Triple-Modified Colchicine Derivatives as Potent Tubulin-Targeting Anticancer Agents.

Majcher U, Klejborowska G, Kaik M, Maj E, Wietrzyk J, Moshari M, Preto J, Tuszynski JA, Huczyński A.

Cells. 2018 Nov 19;7(11). pii: E216. doi: 10.3390/cells7110216.

15.

Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity.

Freedman H, Huzil JT, Luchko T, Ludueña RF, Tuszynski JA.

J Chem Inf Model. 2009 Feb;49(2):424-36. doi: 10.1021/ci8003336.

PMID:
19434843
16.

Computational design and biological testing of highly cytotoxic colchicine ring A modifications.

Torin Huzil J, Winter P, Johnson L, Weis AL, Bakos T, Banerjee A, Luduena RF, Damaraju S, Tuszynski JA.

Chem Biol Drug Des. 2010 Jun;75(6):541-50. doi: 10.1111/j.1747-0285.2010.00970.x. Epub 2010 Apr 8.

PMID:
20408852
17.

Novel Colchicine Derivatives and their Anti-cancer Activity.

Johnson L, Goping IS, Rieger A, Mane JY, Huzil T, Banerjee A, Luduena R, Hassani B, Winter P, Tuszynski JA.

Curr Top Med Chem. 2017;17(22):2538-2558. doi: 10.2174/1568026617666170104143618. Review.

PMID:
28056740
18.

The roles of beta-tubulin mutations and isotype expression in acquired drug resistance.

Huzil JT, Chen K, Kurgan L, Tuszynski JA.

Cancer Inform. 2007 Apr 27;3:159-81.

19.

Biphasic kinetics of the colchicine-tubulin interaction: role of amino acids surrounding the A ring of bound colchicine molecule.

Gupta S, Banerjee M, Poddar A, Banerjee A, Basu G, Roy D, Bhattacharyya B.

Biochemistry. 2005 Aug 2;44(30):10181-8.

20.

Reversible action of diaminothiazoles in cancer cells is implicated by the induction of a fast conformational change of tubulin and suppression of microtubule dynamics.

Thomas NE, Thamkachy R, Sivakumar KC, Sreedevi KJ, Louis XL, Thomas SA, Kumar R, Rajasekharan KN, Cassimeris L, Sengupta S.

Mol Cancer Ther. 2014 Jan;13(1):179-89. doi: 10.1158/1535-7163.MCT-13-0479. Epub 2013 Nov 5.

Supplemental Content

Support Center