Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

End-to-end semantic segmentation of personalized deep brain structures for non-invasive brain stimulation.

Rashed EA, Gomez-Tames J, Hirata A.

Neural Netw. 2020 Feb 25;125:233-244. doi: 10.1016/j.neunet.2020.02.006. [Epub ahead of print]

PMID:
32151914
2.

Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): A computational analysis of electric fields.

Gomez-Tames J, Asai A, Hirata A.

Clin Neurophysiol. 2020 Mar;131(3):755-765. doi: 10.1016/j.clinph.2019.11.018. Epub 2019 Dec 2.

PMID:
31839398
3.

Development of accurate human head models for personalized electromagnetic dosimetry using deep learning.

Rashed EA, Gomez-Tames J, Hirata A.

Neuroimage. 2019 Nov 15;202:116132. doi: 10.1016/j.neuroimage.2019.116132. Epub 2019 Aug 28.

PMID:
31472248
4.

Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

Chhatbar PY, Kautz SA, Takacs I, Rowland NC, Revuelta GJ, George MS, Bikson M, Feng W.

Brain Stimul. 2018 Jul - Aug;11(4):727-733. doi: 10.1016/j.brs.2018.03.006. Epub 2018 Mar 13.

5.

Deep Learning-Based Deep Brain Stimulation Targeting and Clinical Applications.

Park SC, Cha JH, Lee S, Jang W, Lee CS, Lee JK.

Front Neurosci. 2019 Oct 24;13:1128. doi: 10.3389/fnins.2019.01128. eCollection 2019.

6.

Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

Alam M, Truong DQ, Khadka N, Bikson M.

Phys Med Biol. 2016 Jun 21;61(12):4506-21. doi: 10.1088/0031-9155/61/12/4506. Epub 2016 May 25.

PMID:
27223853
7.

Current Density Imaging During Transcranial Direct Current Stimulation Using DT-MRI and MREIT: Algorithm Development and Numerical Simulations.

Kwon OI, Sajib SZ, Sersa I, Oh TI, Jeong WC, Kim HJ, Woo EJ.

IEEE Trans Biomed Eng. 2016 Jan;63(1):168-75. doi: 10.1109/TBME.2015.2448555. Epub 2015 Jun 23.

PMID:
26111387
8.

Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS.

Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M.

Neuroimage. 2013 Jul 1;74:266-75. doi: 10.1016/j.neuroimage.2013.01.042. Epub 2013 Jan 28.

9.

Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.

Laakso I, Tanaka S, Mikkonen M, Koyama S, Sadato N, Hirata A.

Neuroimage. 2016 Aug 15;137:140-151. doi: 10.1016/j.neuroimage.2016.05.032. Epub 2016 May 14.

10.

Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.

Tong N, Gou S, Yang S, Ruan D, Sheng K.

Med Phys. 2018 Oct;45(10):4558-4567. doi: 10.1002/mp.13147. Epub 2018 Sep 19.

11.

Deep Learning-Based Development of Personalized Human Head Model with Non-Uniform Conductivity for Brain Stimulation.

Rashed EA, Gomez-Tames J, Hirata A.

IEEE Trans Med Imaging. 2020 Jan 27. doi: 10.1109/TMI.2020.2969682. [Epub ahead of print]

PMID:
31995479
12.

Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.

Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C, Madsen CG, Saturnino GB, Thielscher A.

Neuroimage. 2018 Jul 1;174:587-598. doi: 10.1016/j.neuroimage.2018.03.001. Epub 2018 Mar 12.

PMID:
29518567
13.

Design of NIRS Probe Based on Computational Model to Find Out the Optimal Location for Non-Invasive Brain Stimulation.

Sharma G, Roy Chowdhury S.

J Med Syst. 2018 Oct 29;42(12):244. doi: 10.1007/s10916-018-1039-x.

PMID:
30374669
14.

Stimulation Effect of Inter-subject Variability in tDCS-Multi-scale Modeling Study.

Im C, Seo H, Jun SC.

Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:3092-3095. doi: 10.1109/EMBC.2018.8513056.

PMID:
30441048
15.

A distance map regularized CNN for cardiac cine MR image segmentation.

Dangi S, Linte CA, Yaniv Z.

Med Phys. 2019 Dec;46(12):5637-5651. doi: 10.1002/mp.13853. Epub 2019 Oct 31.

PMID:
31598971
16.

Electric field and current density distribution in an anatomical head model during transcranial direct current stimulation for tinnitus treatment.

Parazzini M, Fiocchi S, Ravazzani P.

Bioelectromagnetics. 2012 Sep;33(6):476-87. doi: 10.1002/bem.21708. Epub 2012 Feb 1.

PMID:
22298345
17.

Automated MRI segmentation for individualized modeling of current flow in the human head.

Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC.

J Neural Eng. 2013 Dec;10(6):066004. doi: 10.1088/1741-2560/10/6/066004. Epub 2013 Oct 8.

18.

Inter-Individual Variation during Transcranial Direct Current Stimulation and Normalization of Dose Using MRI-Derived Computational Models.

Datta A, Truong D, Minhas P, Parra LC, Bikson M.

Front Psychiatry. 2012 Oct 22;3:91. doi: 10.3389/fpsyt.2012.00091. eCollection 2012.

19.

Effects of Electrode Drift in Transcranial Direct Current Stimulation.

Woods AJ, Bryant V, Sacchetti D, Gervits F, Hamilton R.

Brain Stimul. 2015 May-Jun;8(3):515-9. doi: 10.1016/j.brs.2014.12.007. Epub 2014 Dec 24.

20.

Transcranial direct current stimulation in obsessive-compulsive disorder: an update in electric field modeling and investigations for optimal electrode montage.

da Silva RMF, Batistuzzo MC, Shavitt RG, Miguel EC, Stern E, Mezger E, Padberg F, D'Urso G, Brunoni AR.

Expert Rev Neurother. 2019 Oct;19(10):1025-1035. doi: 10.1080/14737175.2019.1637257. Epub 2019 Jul 8.

PMID:
31244347

Supplemental Content

Support Center