Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.

Vitucci JC, Pulse M, Tabor-Simecka L, Simecka J.

BMC Microbiol. 2020 Feb 5;20(1):27. doi: 10.1186/s12866-020-1710-5.

2.

In the Endemic Setting, Clostridium difficile Ribotype 027 Is Virulent But Not Hypervirulent.

Aitken SL, Alam MJ, Khaleduzzaman M, Walk ST, Musick WL, Pham VP, Christensen JL, Atmar RL, Xie Y, Garey KW.

Infect Control Hosp Epidemiol. 2015 Nov;36(11):1318-23. doi: 10.1017/ice.2015.187. Epub 2015 Aug 20. Erratum in: Infect Control Hosp Epidemiol. 2016 Jan;37(1):124. Khaleduzzuman, Mohammed [corrected to Khaleduzzaman, Mohammed].

3.

The relationship between phenotype, ribotype, and clinical disease in human Clostridium difficile isolates.

Carlson PE Jr, Walk ST, Bourgis AE, Liu MW, Kopliku F, Lo E, Young VB, Aronoff DM, Hanna PC.

Anaerobe. 2013 Dec;24:109-16. doi: 10.1016/j.anaerobe.2013.04.003. Epub 2013 Apr 20.

4.

Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.

Anjuwon-Foster BR, Maldonado-Vazquez N, Tamayo R.

J Bacteriol. 2018 Jun 25;200(14). pii: e00056-18. doi: 10.1128/JB.00056-18. Print 2018 Jul 15.

5.

Increasing prevalence of the epidemic ribotype 106 in healthcare facility-associated and community-associated Clostridioides difficile infection.

Suárez-Bode L, Barrón R, Pérez JL, Mena A.

Anaerobe. 2019 Feb;55:124-129. doi: 10.1016/j.anaerobe.2018.12.002. Epub 2018 Dec 11.

PMID:
30550807
6.

Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation.

Kurka H, Ehrenreich A, Ludwig W, Monot M, Rupnik M, Barbut F, Indra A, Dupuy B, Liebl W.

PLoS One. 2014 Jan 23;9(1):e86535. doi: 10.1371/journal.pone.0086535. eCollection 2014.

7.

Differentiating virulent 027 and non-027 Clostridium difficile strains by molecular methods.

Mentula S, Laakso S, Lyytikäinen O, Kirveskari J.

Expert Rev Mol Diagn. 2015;15(9):1225-9. doi: 10.1586/14737159.2015.1069710. Epub 2015 Aug 4.

PMID:
26289601
8.

PCR ribotypes of Clostridioides difficile across Texas from 2011 to 2018 including emergence of ribotype 255.

Gonzales-Luna AJ, Carlson TJ, Dotson KM, Poblete K, Costa G, Miranda J, Lancaster C, Walk ST, Tupy S, Begum K, Alam MJ, Garey KW.

Emerg Microbes Infect. 2020 Dec;9(1):341-347. doi: 10.1080/22221751.2020.1721335.

9.

Prevalence and Strain Characterization of Clostridioides (Clostridium) difficile in Representative Regions of Germany, Ghana, Tanzania and Indonesia - A Comparative Multi-Center Cross-Sectional Study.

Seugendo M, Janssen I, Lang V, Hasibuan I, Bohne W, Cooper P, Daniel R, Gunka K, Kusumawati RL, Mshana SE, von Müller L, Okamo B, Ortlepp JR, Overmann J, Riedel T, Rupnik M, Zimmermann O, Groß U.

Front Microbiol. 2018 Aug 7;9:1843. doi: 10.3389/fmicb.2018.01843. eCollection 2018.

10.

Subtyping of Clostridium difficile PCR ribotypes 591, 106 and 002, the dominant strain types circulating in Medellin, Colombia.

Salazar CL, Reyes C, Cienfuegos-Gallet AV, Best E, Atehortua S, Sierra P, Correa MM, Fawley WN, Paredes-Sabja D, Wilcox M, Gonzalez A.

PLoS One. 2018 Apr 12;13(4):e0195694. doi: 10.1371/journal.pone.0195694. eCollection 2018.

11.

Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile.

Vohra P, Poxton IR.

Microbiology. 2011 May;157(Pt 5):1343-1353. doi: 10.1099/mic.0.046243-0. Epub 2011 Feb 17.

PMID:
21330434
12.
13.

The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011-2014.

Freeman J, Vernon J, Pilling S, Morris K, Nicholson S, Shearman S, Longshaw C, Wilcox MH; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes Study Group.

Clin Microbiol Infect. 2018 Jul;24(7):724-731. doi: 10.1016/j.cmi.2017.10.008. Epub 2017 Oct 21.

14.

Epidemic Clostridium difficile strains demonstrate increased competitive fitness compared to nonepidemic isolates.

Robinson CD, Auchtung JM, Collins J, Britton RA.

Infect Immun. 2014 Jul;82(7):2815-25. doi: 10.1128/IAI.01524-14. Epub 2014 Apr 14.

15.

Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates.

Koene MG, Mevius D, Wagenaar JA, Harmanus C, Hensgens MP, Meetsma AM, Putirulan FF, van Bergen MA, Kuijper EJ.

Clin Microbiol Infect. 2012 Aug;18(8):778-84. doi: 10.1111/j.1469-0691.2011.03651.x. Epub 2011 Sep 15.

16.

Ribotypes and New Virulent Strains Across Europe.

Couturier J, Davies K, Gateau C, Barbut F.

Adv Exp Med Biol. 2018;1050:45-58. doi: 10.1007/978-3-319-72799-8_4. Review.

PMID:
29383663
17.

Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea.

Kim J, Kang JO, Kim H, Seo MR, Choi TY, Pai H, Kuijper EJ, Sanders I, Fawley W.

Clin Microbiol Infect. 2013 Jun;19(6):521-7. doi: 10.1111/j.1469-0691.2012.03910.x. Epub 2012 Jun 19.

18.

Evaluation of linezolid for the treatment of Clostridium difficile infection caused by epidemic strains using an in vitro human gut model.

Baines SD, Noel AR, Huscroft GS, Todhunter SL, O'Connor R, Hobbs JK, Freeman J, Lovering AM, Wilcox MH.

J Antimicrob Chemother. 2011 Jul;66(7):1537-46. doi: 10.1093/jac/dkr155. Epub 2011 Apr 18.

PMID:
21504940
19.

Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile.

Goldenberg SD, French GL.

J Infect. 2011 May;62(5):355-62. doi: 10.1016/j.jinf.2011.03.001. Epub 2011 Mar 21.

PMID:
21396957
20.

Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to Clostridium difficile Virulence.

Lewis BB, Carter RA, Ling L, Leiner I, Taur Y, Kamboj M, Dubberke ER, Xavier J, Pamer EG.

mBio. 2017 Aug 8;8(4). pii: e00885-17. doi: 10.1128/mBio.00885-17.

Supplemental Content

Support Center