Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Dataset on interactions of membrane active agents with lipid bilayers.

Ashrafuzzaman M, Tseng CY, Tuszynski JA.

Data Brief. 2020 Jan 16;29:105138. doi: 10.1016/j.dib.2020.105138. eCollection 2020 Apr.

2.

Ion pore formation in lipid bilayers and related energetic considerations.

Ashrafuzzaman M, Tuszynski J.

Curr Med Chem. 2012;19(11):1619-34. Review.

PMID:
22376036
3.

Charge-based interactions of antimicrobial peptides and general drugs with lipid bilayers.

Ashrafuzzaman M, Tseng CY, Tuszynski JA.

J Mol Graph Model. 2020 Mar;95:107502. doi: 10.1016/j.jmgm.2019.107502. Epub 2019 Nov 27.

PMID:
31805474
4.

The importance of membrane defects-lessons from simulations.

Bennett WF, Tieleman DP.

Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.

PMID:
24892900
5.

Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.

Ashrafuzzaman M, Tseng CY, Duszyk M, Tuszynski JA.

Chem Biol Drug Des. 2012 Dec;80(6):992-1002. doi: 10.1111/cbdd.12060.

PMID:
23006796
6.

Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug;10(4):040301. Epub 2013 Aug 2.

PMID:
23912807
7.

Regulation of channel function due to physical energetic coupling with a lipid bilayer.

Ashrafuzzaman M, Tseng CY, Tuszynski JA.

Biochem Biophys Res Commun. 2014 Mar 7;445(2):463-8. doi: 10.1016/j.bbrc.2014.02.012. Epub 2014 Feb 12.

8.

Membrane interactions and pore formation by the antimicrobial peptide protegrin.

Lazaridis T, He Y, Prieto L.

Biophys J. 2013 Feb 5;104(3):633-42. doi: 10.1016/j.bpj.2012.12.038.

9.

Peptide-lipid interactions: experiments and applications.

Galdiero S, Falanga A, Cantisani M, Vitiello M, Morelli G, Galdiero M.

Int J Mol Sci. 2013 Sep 12;14(9):18758-89. doi: 10.3390/ijms140918758.

10.

Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.

Ulmschneider JP, Ulmschneider MB.

Acc Chem Res. 2018 May 15;51(5):1106-1116. doi: 10.1021/acs.accounts.7b00613. Epub 2018 Apr 18.

PMID:
29667836
11.

Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.

Shental-Bechor D, Haliloglu T, Ben-Tal N.

Biophys J. 2007 Sep 15;93(6):1858-71. Epub 2007 May 11.

12.

Computational membrane biophysics: From ion channel interactions with drugs to cellular function.

Miranda WE, Ngo VA, Perissinotti LL, Noskov SY.

Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1643-1653. doi: 10.1016/j.bbapap.2017.08.008. Epub 2017 Aug 26. Review.

13.

Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.

Polyansky AA, Volynsky PE, Nolde DE, Arseniev AS, Efremov RG.

J Phys Chem B. 2005 Aug 11;109(31):15052-9.

PMID:
16852905
14.

Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.

Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HH, Ruaan RC.

J Mol Biol. 2009 Sep 25;392(3):837-54. doi: 10.1016/j.jmb.2009.06.071. Epub 2009 Jul 2.

PMID:
19576903
15.

Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor.

Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K.

Biochemistry. 2000 Jul 25;39(29):8648-54.

PMID:
10913273
16.

Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence.

Islami M, Mehrnejad F, Doustdar F, Alimohammadi M, Khadem-Maaref M, Mir-Derikvand M, Taghdir M.

Chem Biol Drug Des. 2014 Aug;84(2):242-52. doi: 10.1111/cbdd.12311. Epub 2014 Apr 30.

PMID:
24581146
17.

Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.

Bennett WF, Hong CK, Wang Y, Tieleman DP.

J Chem Theory Comput. 2016 Sep 13;12(9):4524-33. doi: 10.1021/acs.jctc.6b00265. Epub 2016 Aug 30.

PMID:
27529120
18.

Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.

Ulmschneider JP.

Biophys J. 2017 Jul 11;113(1):73-81. doi: 10.1016/j.bpj.2017.04.056.

19.

Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.

Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M.

Biochemistry. 1996 Sep 24;35(38):12612-22.

PMID:
8823199
20.

Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.

Andersson M, Jackman J, Wilson D, Jarvoll P, Alfredsson V, Okeyo G, Duran R.

Colloids Surf B Biointerfaces. 2011 Feb 1;82(2):550-61. doi: 10.1016/j.colsurfb.2010.10.017. Epub 2010 Oct 15.

PMID:
21071188

Supplemental Content

Support Center