Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

[Recognition method of single trial motor imagery electroencephalogram signal based on sparse common spatial pattern and Fisher discriminant analysis].

Fu R, Tian Y, Bao T.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Dec 25;36(6):911-915. doi: 10.7507/1001-5515.201809019. Chinese.

PMID:
31875363
2.

Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.

Liu A, Chen K, Liu Q, Ai Q, Xie Y, Chen A.

Sensors (Basel). 2017 Nov 8;17(11). pii: E2576. doi: 10.3390/s17112576.

3.

Automatic Detection of Epileptic Seizures in EEG Using Sparse CSP and Fisher Linear Discrimination Analysis Algorithm.

Fu R, Tian Y, Shi P, Bao T.

J Med Syst. 2020 Jan 2;44(2):43. doi: 10.1007/s10916-019-1504-1.

PMID:
31897615
4.

An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System.

Feng JK, Jin J, Daly I, Zhou J, Niu Y, Wang X, Cichocki A.

Comput Intell Neurosci. 2019 May 13;2019:8068357. doi: 10.1155/2019/8068357. eCollection 2019.

5.

Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.

Zhang Y, Wang Y, Jin J, Wang X.

Int J Neural Syst. 2017 Mar;27(2):1650032. doi: 10.1142/S0129065716500325. Epub 2016 Apr 11.

PMID:
27377661
6.

Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

Zhang Y, Zhou G, Jin J, Wang X, Cichocki A.

J Neurosci Methods. 2015 Nov 30;255:85-91. doi: 10.1016/j.jneumeth.2015.08.004. Epub 2015 Aug 13.

PMID:
26277421
7.

Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

Miao M, Zeng H, Wang A, Zhao C, Liu F.

J Neurosci Methods. 2017 Feb 15;278:13-24. doi: 10.1016/j.jneumeth.2016.12.010. Epub 2016 Dec 21.

PMID:
28012854
8.

CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.

Kumar S, Mamun K, Sharma A.

Comput Biol Med. 2017 Dec 1;91:231-242. doi: 10.1016/j.compbiomed.2017.10.025. Epub 2017 Oct 24.

PMID:
29100117
9.

Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.

Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A.

IEEE Trans Cybern. 2019 Sep;49(9):3322-3332. doi: 10.1109/TCYB.2018.2841847. Epub 2018 Jun 14.

PMID:
29994667
10.

Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.

Park SH, Lee D, Lee SG.

IEEE Trans Neural Syst Rehabil Eng. 2018 Feb;26(2):498-505. doi: 10.1109/TNSRE.2017.2757519. Epub 2017 Sep 28.

PMID:
28961119
11.

A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition.

Miao M, Wang A, Liu F.

Med Biol Eng Comput. 2017 Sep;55(9):1589-1603. doi: 10.1007/s11517-017-1622-1. Epub 2017 Feb 4.

PMID:
28161876
12.

[Single trial classification of motor imagery electroencephalogram based on Fisher criterion].

Fu R, Hou P, Li M.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Oct 25;35(5):774-778. doi: 10.7507/1001-5515.201701040. Chinese.

PMID:
30370718
13.

Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG.

Kirar JS, Agrawal RK.

J Med Syst. 2018 Mar 16;42(5):78. doi: 10.1007/s10916-018-0931-8.

PMID:
29546648
14.
15.

A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.

Yin X, Xu B, Jiang C, Fu Y, Wang Z, Li H, Shi G.

J Neural Eng. 2015 Jun;12(3):036004. doi: 10.1088/1741-2560/12/3/036004. Epub 2015 Apr 2.

PMID:
25834118
16.

Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.

Mahmoudi M, Shamsi M.

Australas Phys Eng Sci Med. 2018 Dec;41(4):957-972. doi: 10.1007/s13246-018-0691-2. Epub 2018 Oct 18.

PMID:
30338495
17.

EEG Channel Selection Based on Correlation Coefficient for Motor Imagery Classification: A Study on Healthy Subjects and ALS Patient.

Yang T, Ang KK, Phua KS, Yu J, Toh V, Ng WH, So RQ.

Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:1996-1999. doi: 10.1109/EMBC.2018.8512701.

PMID:
30440791
18.

[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

Zhou J, Tang X.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Aug;32(4):735-9. Chinese.

PMID:
26710441
19.

[Study on Electroencephalogram Recognition Framework by Common Spatial Pattern and Fuzzy Fusion].

Xu L, Xiao G, Li M.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2015 Dec;32(6):1173-8. Chinese.

PMID:
27079082
20.

Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

Yang B, Li H, Wang Q, Zhang Y.

Comput Methods Programs Biomed. 2016 Jun;129:21-8. doi: 10.1016/j.cmpb.2016.02.020. Epub 2016 Mar 5.

PMID:
27084317

Supplemental Content

Support Center