Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Gibbs free energy of protein-protein interactions correlates with ATP production in cancer cells.

Golas SM, Nguyen AN, Rietman EA, Tuszynski JA.

J Biol Phys. 2019 Dec;45(4):423-430. doi: 10.1007/s10867-019-09537-1. Epub 2019 Dec 16.

PMID:
31845118
2.

Thermodynamic measures of cancer: Gibbs free energy and entropy of protein-protein interactions.

Rietman EA, Platig J, Tuszynski JA, Lakka Klement G.

J Biol Phys. 2016 Jun;42(3):339-50. doi: 10.1007/s10867-016-9410-y. Epub 2016 Mar 24.

3.

Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

Martinez-Outschoorn U, Sotgia F, Lisanti MP.

Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5. Review.

PMID:
24787293
4.

Gibbs free energy as a measure of complexity correlates with time within C. elegans embryonic development.

McGuire SH, Rietman EA, Siegelmann H, Tuszynski JA.

J Biol Phys. 2017 Dec;43(4):551-563. doi: 10.1007/s10867-017-9469-0. Epub 2017 Sep 19.

5.

The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.

Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP.

Cell Cycle. 2009 Dec;8(23):3984-4001. Epub 2009 Dec 5.

PMID:
19923890
6.

Proteomic analysis of oral cancer reveals new potential therapeutic targets involved in the Warburg effect.

Huang YP, Chang NW.

Clin Exp Pharmacol Physiol. 2017 Aug;44(8):880-887. doi: 10.1111/1440-1681.12774.

PMID:
28453233
8.

Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.

Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD.

J Biol Chem. 2017 Apr 28;292(17):7189-7207. doi: 10.1074/jbc.M116.774471. Epub 2017 Mar 7. Erratum in: J Biol Chem. 2018 Aug 10;293(32):12649-12652.

9.

Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.

Lu CL, Qin L, Liu HC, Candas D, Fan M, Li JJ.

PLoS One. 2015 Mar 25;10(3):e0121046. doi: 10.1371/journal.pone.0121046. eCollection 2015.

10.

Warburg effect in Gynecologic cancers.

Kobayashi Y, Banno K, Kunitomi H, Takahashi T, Takeda T, Nakamura K, Tsuji K, Tominaga E, Aoki D.

J Obstet Gynaecol Res. 2019 Mar;45(3):542-548. doi: 10.1111/jog.13867. Epub 2018 Dec 3. Review.

PMID:
30511455
11.

The inverse association of cancer and Alzheimer's: a bioenergetic mechanism.

Demetrius LA, Simon DK.

J R Soc Interface. 2013 Feb 20;10(82):20130006. doi: 10.1098/rsif.2013.0006. Print 2013 May 6.

12.

Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age.

Rietman EA, Taylor S, Siegelmann HT, Deriu MA, Cavaglia M, Tuszynski JA.

Int J Mol Sci. 2020 Feb 7;21(3). pii: E1116. doi: 10.3390/ijms21031116.

13.

Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process.

Vallée A, Lecarpentier Y, Vallée JN.

Int J Mol Sci. 2017 Nov 27;18(12). pii: E2537. doi: 10.3390/ijms18122537. Review.

14.

Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.

Hu D, Linders A, Yamak A, Correia C, Kijlstra JD, Garakani A, Xiao L, Milan DJ, van der Meer P, Serra M, Alves PM, Domian IJ.

Circ Res. 2018 Oct 12;123(9):1066-1079. doi: 10.1161/CIRCRESAHA.118.313249.

15.

Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect.

Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E.

PLoS Comput Biol. 2011 Mar;7(3):e1002018. doi: 10.1371/journal.pcbi.1002018. Epub 2011 Mar 10.

16.

Warburg effect hypothesis in autism Spectrum disorders.

Vallée A, Vallée JN.

Mol Brain. 2018 Jan 4;11(1):1. doi: 10.1186/s13041-017-0343-6. Review.

17.

Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches.

Vallée A, Lecarpentier Y, Guillevin R, Vallée JN.

Int J Mol Sci. 2018 Apr 16;19(4). pii: E1212. doi: 10.3390/ijms19041212. Review.

18.

Phospholipase D-mTOR requirement for the Warburg effect in human cancer cells.

Toschi A, Lee E, Thompson S, Gadir N, Yellen P, Drain CM, Ohh M, Foster DA.

Cancer Lett. 2010 Dec 18;299(1):72-9. doi: 10.1016/j.canlet.2010.08.006.

19.

Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited.

Vazquez A, Liu J, Zhou Y, Oltvai ZN.

BMC Syst Biol. 2010 May 6;4:58. doi: 10.1186/1752-0509-4-58.

20.

Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.

Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Flomenberg N, Tsirigos A, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP.

Cell Cycle. 2010 Jun 15;9(12):2412-22. Epub 2010 Jun 15.

PMID:
20562527

Supplemental Content

Support Center