Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Cost of focality in TDCS: Interindividual variability in electric fields.

Mikkonen M, Laakso I, Tanaka S, Hirata A.

Brain Stimul. 2019 Oct 2. pii: S1935-861X(19)30380-8. doi: 10.1016/j.brs.2019.09.017. [Epub ahead of print]

2.

Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).

Alam M, Truong DQ, Khadka N, Bikson M.

Phys Med Biol. 2016 Jun 21;61(12):4506-21. doi: 10.1088/0031-9155/61/12/4506. Epub 2016 May 25.

PMID:
27223853
3.

State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control.

DaSilva AF, Truong DQ, DosSantos MF, Toback RL, Datta A, Bikson M.

Front Neuroanat. 2015 Jul 15;9:89. doi: 10.3389/fnana.2015.00089. eCollection 2015.

4.

Effects of transcranial direct current stimulation for treating depression: A modeling study.

Csifcsák G, Boayue NM, Puonti O, Thielscher A, Mittner M.

J Affect Disord. 2018 Jul;234:164-173. doi: 10.1016/j.jad.2018.02.077. Epub 2018 Feb 28.

PMID:
29529550
5.

Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.

Galletta EE, Cancelli A, Cottone C, Simonelli I, Tecchio F, Bikson M, Marangolo P.

Brain Stimul. 2015 Nov-Dec;8(6):1108-15. doi: 10.1016/j.brs.2015.06.018. Epub 2015 Jul 2.

PMID:
26198364
6.

Impact of Electrode Number on the Performance of High-Definition Transcranial Direct Current Stimulation (HD-tDCS).

Wang Y, Zhou H, Li Y, Liu W.

Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:4182-4185. doi: 10.1109/EMBC.2018.8513379.

PMID:
30441277
7.

Transcranial direct current stimulation in obsessive-compulsive disorder: an update in electric field modeling and investigations for optimal electrode montage.

da Silva RMF, Batistuzzo MC, Shavitt RG, Miguel EC, Stern E, Mezger E, Padberg F, D'Urso G, Brunoni AR.

Expert Rev Neurother. 2019 Oct;19(10):1025-1035. doi: 10.1080/14737175.2019.1637257. Epub 2019 Jul 8.

PMID:
31244347
8.

Effects of Electrode Drift in Transcranial Direct Current Stimulation.

Woods AJ, Bryant V, Sacchetti D, Gervits F, Hamilton R.

Brain Stimul. 2015 May-Jun;8(3):515-9. doi: 10.1016/j.brs.2014.12.007. Epub 2014 Dec 24.

9.

Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (HD-tDCS).

Villamar MF, Volz MS, Bikson M, Datta A, Dasilva AF, Fregni F.

J Vis Exp. 2013 Jul 14;(77):e50309. doi: 10.3791/50309.

10.

A computational study on effect of a transcranial channel as a skull/brain interface in the conventional rectangular patch-type transcranial direct current stimulation.

Hyeon Seo, Hyoung-Ihl Kim, Sung Chan Jun.

Conf Proc IEEE Eng Med Biol Soc. 2017 Jul;2017:1946-1949. doi: 10.1109/EMBC.2017.8037230.

PMID:
29060274
11.

Putting focus on transcranial direct current stimulation in language production studies.

Klaus J, Schutter DJLG.

PLoS One. 2018 Aug 23;13(8):e0202730. doi: 10.1371/journal.pone.0202730. eCollection 2018.

12.

A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS.

Faria P, Hallett M, Miranda PC.

J Neural Eng. 2011 Dec;8(6):066017. doi: 10.1088/1741-2560/8/6/066017. Epub 2011 Nov 15.

13.

Design of NIRS Probe Based on Computational Model to Find Out the Optimal Location for Non-Invasive Brain Stimulation.

Sharma G, Roy Chowdhury S.

J Med Syst. 2018 Oct 29;42(12):244. doi: 10.1007/s10916-018-1039-x.

PMID:
30374669
14.

Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy.

Suh HS, Lee WH, Cho YS, Kim JH, Kim TS.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2053-6. doi: 10.1109/IEMBS.2010.5626502.

PMID:
21096150
15.

Effects of High-Definition and Conventional tDCS on Response Inhibition.

Hogeveen J, Grafman J, Aboseria M, David A, Bikson M, Hauner KK.

Brain Stimul. 2016 Sep-Oct;9(5):720-729. doi: 10.1016/j.brs.2016.04.015. Epub 2016 Apr 22.

PMID:
27198577
16.

The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.

Manoli Z, Parazzini M, Ravazzani P, Samaras T.

Med Phys. 2017 Jan;44(1):262-271. doi: 10.1002/mp.12006. Epub 2017 Jan 3.

PMID:
28044315
17.

A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability.

Caparelli-Daquer EM, Zimmermann TJ, Mooshagian E, Parra LC, Rice JK, Datta A, Bikson M, Wassermann EM.

Conf Proc IEEE Eng Med Biol Soc. 2012;2012:735-8. doi: 10.1109/EMBC.2012.6346036.

18.

Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.

Laakso I, Tanaka S, Mikkonen M, Koyama S, Sadato N, Hirata A.

Neuroimage. 2016 Aug 15;137:140-151. doi: 10.1016/j.neuroimage.2016.05.032. Epub 2016 May 14.

19.

Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS.

Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M.

Neuroimage. 2013 Jul 1;74:266-75. doi: 10.1016/j.neuroimage.2013.01.042. Epub 2013 Jan 28.

20.

Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

Chhatbar PY, Kautz SA, Takacs I, Rowland NC, Revuelta GJ, George MS, Bikson M, Feng W.

Brain Stimul. 2018 Jul - Aug;11(4):727-733. doi: 10.1016/j.brs.2018.03.006. Epub 2018 Mar 13.

Supplemental Content

Support Center