Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Graph-theoretical analysis for energy landscape reveals the organization of state transitions in the resting-state human cerebral cortex.

Kang J, Pae C, Park HJ.

PLoS One. 2019 Sep 9;14(9):e0222161. doi: 10.1371/journal.pone.0222161. eCollection 2019.

2.

Energy landscapes of resting-state brain networks.

Watanabe T, Hirose S, Wada H, Imai Y, Machida T, Shirouzu I, Konishi S, Miyashita Y, Masuda N.

Front Neuroinform. 2014 Feb 25;8:12. doi: 10.3389/fninf.2014.00012. eCollection 2014.

3.

A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG.

Jäncke L, Langer N.

J Neuropsychol. 2011 Sep;5(2):178-202. doi: 10.1111/j.1748-6653.2011.02004.x.

PMID:
21923785
4.

A computational study of whole-brain connectivity in resting state and task fMRI.

Goparaju B, Rana KD, Calabro FJ, Vaina LM.

Med Sci Monit. 2014 Jun 20;20:1024-42. doi: 10.12659/MSM.891142.

5.

Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach.

Du Y, Pearlson GD, Yu Q, He H, Lin D, Sui J, Wu L, Calhoun VD.

Schizophr Res. 2016 Jan;170(1):55-65. doi: 10.1016/j.schres.2015.11.021. Epub 2015 Dec 3.

6.

The energy landscape underpinning module dynamics in the human brain connectome.

Ashourvan A, Gu S, Mattar MG, Vettel JM, Bassett DS.

Neuroimage. 2017 Aug 15;157:364-380. doi: 10.1016/j.neuroimage.2017.05.067. Epub 2017 Jun 7.

7.

Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.

van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE.

Neuroimage. 2008 Nov 15;43(3):528-39. doi: 10.1016/j.neuroimage.2008.08.010. Epub 2008 Aug 22.

PMID:
18786642
8.

Does the regulation of local excitation-inhibition balance aid in recovery of functional connectivity? A computational account.

Vattikonda A, Surampudi BR, Banerjee A, Deco G, Roy D.

Neuroimage. 2016 Aug 1;136:57-67. doi: 10.1016/j.neuroimage.2016.05.002. Epub 2016 May 10.

PMID:
27177761
9.

Altered network topologies and hub organization in adults with autism: a resting-state fMRI study.

Itahashi T, Yamada T, Watanabe H, Nakamura M, Jimbo D, Shioda S, Toriizuka K, Kato N, Hashimoto R.

PLoS One. 2014 Apr 8;9(4):e94115. doi: 10.1371/journal.pone.0094115. eCollection 2014.

10.

Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

Di X, Gohel S, Kim EH, Biswal BB.

Front Hum Neurosci. 2013 Sep 17;7:493. doi: 10.3389/fnhum.2013.00493. eCollection 2013.

11.

Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

Koshimori Y, Cho SS, Criaud M, Christopher L, Jacobs M, Ghadery C, Coakeley S, Harris M, Mizrahi R, Hamani C, Lang AE, Houle S, Strafella AP.

Front Aging Neurosci. 2016 Nov 10;8:259. eCollection 2016.

12.

Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients.

Wang J, Li T, Wang N, Xian J, He H.

Eur Radiol. 2016 Nov;26(11):3957-3967. Epub 2016 Feb 11.

PMID:
26868498
13.

Graph-Theoretical Study of Functional Changes Associated with the Iowa Gambling Task.

Bolt T, Laurienti PJ, Lyday R, Morgan A, Dagenbach D.

Front Hum Neurosci. 2016 Jun 27;10:314. doi: 10.3389/fnhum.2016.00314. eCollection 2016.

14.

Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy.

Gill RS, Mirsattari SM, Leung LS.

Neuroimage Clin. 2016 Nov 3;13:70-81. eCollection 2017.

15.

Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study.

Polanía R, Paulus W, Antal A, Nitsche MA.

Neuroimage. 2011 Feb 1;54(3):2287-96. doi: 10.1016/j.neuroimage.2010.09.085. Epub 2010 Oct 13.

PMID:
20932916
16.

Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.

Geisler D, Borchardt V, Lord AR, Boehm I, Ritschel F, Zwipp J, Clas S, King JA, Wolff-Stephan S, Roessner V, Walter M, Ehrlich S.

J Psychiatry Neurosci. 2016 Jan;41(1):6-15.

17.

Graph-based network analysis of resting-state functional MRI.

Wang J, Zuo X, He Y.

Front Syst Neurosci. 2010 Jun 7;4:16. doi: 10.3389/fnsys.2010.00016. eCollection 2010.

18.

Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition.

Díez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N.

Neuroimage Clin. 2017 Dec 9;17:847-855. doi: 10.1016/j.nicl.2017.12.013. eCollection 2018.

19.

Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

Cheng L, Zhu Y, Sun J, Deng L, He N, Yang Y, Ling H, Ayaz H, Fu Y, Tong S.

Int J Neural Syst. 2018 Sep;28(7):1850002. doi: 10.1142/S0129065718500028. Epub 2018 Jan 25.

PMID:
29607681
20.

Community and household-level socioeconomic disadvantage and functional organization of the salience and emotion network in children and adolescents.

Gellci K, Marusak HA, Peters C, Elrahal F, Iadipaolo AS, Rabinak CA.

Neuroimage. 2019 Jan 1;184:729-740. doi: 10.1016/j.neuroimage.2018.09.077. Epub 2018 Oct 1.

PMID:
30287301

Supplemental Content

Support Center