Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain.

Zuo Z, Zolekar A, Babu K, Lin VJ, Hayatshahi HS, Rajan R, Wang YC, Liu J.

Elife. 2019 Jul 30;8. pii: e46500. doi: 10.7554/eLife.46500.

2.

Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.

Zhu X, Clarke R, Puppala AK, Chittori S, Merk A, Merrill BJ, Simonović M, Subramaniam S.

Nat Struct Mol Biol. 2019 Aug;26(8):679-685. doi: 10.1038/s41594-019-0258-2. Epub 2019 Jul 8.

3.

The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.

Zeng Y, Cui Y, Zhang Y, Zhang Y, Liang M, Chen H, Lan J, Song G, Lou J.

Nucleic Acids Res. 2018 Jan 9;46(1):350-361. doi: 10.1093/nar/gkx1117.

4.

Structure and Dynamics of Cas9 HNH Domain Catalytic State.

Zuo Z, Liu J.

Sci Rep. 2017 Dec 8;7(1):17271. doi: 10.1038/s41598-017-17578-6.

5.

Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.

Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Wang Y.

Mol Cell. 2019 Dec 19;76(6):938-952.e5. doi: 10.1016/j.molcel.2019.09.025. Epub 2019 Oct 24.

PMID:
31668930
6.

Real-time observation of flexible domain movements in CRISPR-Cas9.

Osuka S, Isomura K, Kajimoto S, Komori T, Nishimasu H, Shima T, Nureki O, Uemura S.

EMBO J. 2018 May 15;37(10). pii: e96941. doi: 10.15252/embj.201796941. Epub 2018 Apr 12.

7.

1H, 13C, 15N backbone and side chain resonance assignment of the HNH nuclease from Streptococcus pyogenes CRISPR-Cas9.

Belato HB, East KW, Lisi GP.

Biomol NMR Assign. 2019 Oct;13(2):367-370. doi: 10.1007/s12104-019-09907-9. Epub 2019 Aug 3.

PMID:
31377985
8.

Staphylococcus aureus Cas9 is a multiple-turnover enzyme.

Yourik P, Fuchs RT, Mabuchi M, Curcuru JL, Robb GB.

RNA. 2019 Jan;25(1):35-44. doi: 10.1261/rna.067355.118. Epub 2018 Oct 22.

9.

Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.

Dong, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z.

Nature. 2017 Jun 15;546(7658):436-439. doi: 10.1038/nature22377. Epub 2017 Apr 27.

PMID:
28448066
10.

Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor.

Kim I, Jeong M, Ka D, Han M, Kim NK, Bae E, Suh JY.

Sci Rep. 2018 Mar 1;8(1):3883. doi: 10.1038/s41598-018-22177-0.

11.

Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.

Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA.

Q Rev Biophys. 2018;51. pii: e91. doi: 10.1017/S0033583518000070. Epub 2018 Aug 3.

12.

A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.

Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A.

Sci Adv. 2017 Aug 4;3(8):eaao0027. doi: 10.1126/sciadv.aao0027. eCollection 2017 Aug.

13.

Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

Raper AT, Stephenson AA, Suo Z.

J Am Chem Soc. 2018 Feb 28;140(8):2971-2984. doi: 10.1021/jacs.7b13047. Epub 2018 Feb 19.

PMID:
29442507
14.

Conformational control of DNA target cleavage by CRISPR-Cas9.

Sternberg SH, LaFrance B, Kaplan M, Doudna JA.

Nature. 2015 Nov 5;527(7576):110-3. doi: 10.1038/nature15544. Epub 2015 Oct 28.

15.

Structural insights into DNA cleavage activation of CRISPR-Cas9 system.

Huai C, Li G, Yao R, Zhang Y, Cao M, Kong L, Jia C, Yuan H, Chen H, Lu D, Huang Q.

Nat Commun. 2017 Nov 9;8(1):1375. doi: 10.1038/s41467-017-01496-2.

16.

Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA.

Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.

17.

CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.

Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA.

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7260-7265. doi: 10.1073/pnas.1707645114. Epub 2017 Jun 26. Erratum in: Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8944.

18.

Crystal structure of Cas9 in complex with guide RNA and target DNA.

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O.

Cell. 2014 Feb 27;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub 2014 Feb 13.

19.

Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.

Liu L, Yin M, Wang M, Wang Y.

Mol Cell. 2019 Feb 7;73(3):611-620.e3. doi: 10.1016/j.molcel.2018.11.011. Epub 2018 Dec 31.

20.

Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.

Vazquez Reyes C, Tangprasertchai NS, Yogesha SD, Nguyen RH, Zhang X, Rajan R, Qin PZ.

Cell Biochem Biophys. 2017 Jun;75(2):203-210. doi: 10.1007/s12013-016-0738-5. Epub 2016 Jun 24.

Supplemental Content

Support Center