Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Identifying and targeting angiogenesis-related microRNAs in ovarian cancer.

Chen X, Mangala LS, Mooberry L, Bayraktar E, Dasari SK, Ma S, Ivan C, Court KA, Rodriguez-Aguayo C, Bayraktar R, Raut S, Sabnis N, Kong X, Yang X, Lopez-Berestein G, Lacko AG, Sood AK.

Oncogene. 2019 Aug;38(33):6095-6108. doi: 10.1038/s41388-019-0862-y. Epub 2019 Jul 9.

PMID:
31289363
2.

Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis.

Ding Y, Wang Y, Zhou J, Gu X, Wang W, Liu C, Bao X, Wang C, Li Y, Zhang Q.

Biomaterials. 2014 Aug;35(25):7214-27. doi: 10.1016/j.biomaterials.2014.05.009. Epub 2014 May 27.

PMID:
24875759
3.

MicroRNA-654-5p suppresses ovarian cancer development impacting on MYC, WNT and AKT pathways.

Majem B, Parrilla A, Jiménez C, Suárez-Cabrera L, Barber M, Marín A, Castellví J, Tamayo G, Moreno-Bueno G, Ponce J, Matias-Guiu X, Alameda F, Romero I, Sánchez JL, Pérez-Benavente A, Moran S, Esteller M, Reventós J, Rigau M, Gil-Moreno A, Segura MF, Santamaría A.

Oncogene. 2019 Aug;38(32):6035-6050. doi: 10.1038/s41388-019-0860-0. Epub 2019 Jul 5.

PMID:
31278368
4.

LncRNA DANCR promotes tumor growth and angiogenesis in ovarian cancer through direct targeting of miR-145.

Lin X, Yang F, Qi X, Li Q, Wang D, Yi T, Yin R, Zhao X, Zhong X, Bian C.

Mol Carcinog. 2019 Dec;58(12):2286-2296. doi: 10.1002/mc.23117. Epub 2019 Sep 23.

PMID:
31545000
5.

miR-146b promotes cell proliferation and increases chemosensitivity, but attenuates cell migration and invasion via FBXL10 in ovarian cancer.

Yan M, Yang X, Shen R, Wu C, Wang H, Ye Q, Yang P, Zhang L, Chen M, Wan B, Zhang Q, Xia S, Lu X, Shao G, Zhou X, Yu J, Shao Q.

Cell Death Dis. 2018 Nov 8;9(11):1123. doi: 10.1038/s41419-018-1093-9.

6.

Downregulation of miR-503 contributes to the development of drug resistance in ovarian cancer by targeting PI3K p85.

Wu D, Lu P, Mi X, Miao J.

Arch Gynecol Obstet. 2018 Mar;297(3):699-707. doi: 10.1007/s00404-018-4649-0. Epub 2018 Jan 11.

PMID:
29327155
7.

Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer.

Kim GH, Won JE, Byeon Y, Kim MG, Wi TI, Lee JM, Park YY, Lee JW, Kang TH, Jung ID, Shin BC, Ahn HJ, Lee YJ, Sood AK, Han HD, Park YM.

Drug Deliv. 2018 Nov;25(1):1394-1402. doi: 10.1080/10717544.2018.1480672.

8.

IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment.

Kinose Y, Sawada K, Makino H, Ogura T, Mizuno T, Suzuki N, Fujikawa T, Morii E, Nakamura K, Sawada I, Toda A, Hashimoto K, Isobe A, Mabuchi S, Ohta T, Itai A, Morishige K, Kurachi H, Kimura T.

Mol Cancer Ther. 2015 Apr;14(4):909-19. doi: 10.1158/1535-7163.MCT-14-0696. Epub 2015 Jan 30.

9.

Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

De A, De A, Papasian C, Hentges S, Banerjee S, Haque I, Banerjee SK.

PLoS One. 2013 Aug 15;8(8):e72748. doi: 10.1371/journal.pone.0072748. eCollection 2013.

10.

miR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1.

Liu B, Zhang J, Yang D.

J Ovarian Res. 2019 Jun 22;12(1):57. doi: 10.1186/s13048-019-0533-1.

11.
12.

RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression.

Chen X, Chen S, Xiu YL, Sun KX, Zong ZH, Zhao Y.

Mol Cancer. 2015 Feb 4;14:31. doi: 10.1186/s12943-015-0304-6.

13.

CXCR2 Inhibition Combined with Sorafenib Improved Antitumor and Antiangiogenic Response in Preclinical Models of Ovarian Cancer.

Devapatla B, Sharma A, Woo S.

PLoS One. 2015 Sep 28;10(9):e0139237. doi: 10.1371/journal.pone.0139237. eCollection 2015.

14.

Ginsenoside 20(S)-Rg3 Prevents PKM2-Targeting miR-324-5p from H19 Sponging to Antagonize the Warburg Effect in Ovarian Cancer Cells.

Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, Li X, Zhao L.

Cell Physiol Biochem. 2018;51(3):1340-1353. doi: 10.1159/000495552. Epub 2018 Nov 27.

15.

Recovery of miR-139-5p in Ovarian Cancer Reverses Cisplatin Resistance by Targeting C-Jun.

Jiang Y, Jiang J, Jia H, Qiao Z, Zhang J.

Cell Physiol Biochem. 2018;51(1):129-141. doi: 10.1159/000495169. Epub 2018 Nov 15.

16.

MiR-335-5p restores cisplatin sensitivity in ovarian cancer cells through targeting BCL2L2.

Liu R, Guo H, Lu S.

Cancer Med. 2018 Sep;7(9):4598-4609. doi: 10.1002/cam4.1682. Epub 2018 Jul 17.

17.

Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy.

Agarwal A, Tressel SL, Kaimal R, Balla M, Lam FH, Covic L, Kuliopulos A.

Cancer Res. 2010 Jul 15;70(14):5880-90. doi: 10.1158/0008-5472.CAN-09-4341. Epub 2010 Jun 22.

18.

Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment.

Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M, Han HD, Ivan C, Rossi S, Zhang X, Nicoloso MS, Wu SY, Almeida MI, Bottsford-Miller J, Pecot CV, Zand B, Matsuo K, Shahzad MM, Jennings NB, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Calin GA.

Cancer Discov. 2013 Nov;3(11):1302-15. doi: 10.1158/2159-8290.CD-13-0159. Epub 2013 Sep 3.

19.

Efficacy of trebananib (AMG 386) in treating epithelial ovarian cancer.

Al Wadi K, Ghatage P.

Expert Opin Pharmacother. 2016;17(6):853-60. doi: 10.1517/14656566.2016.1161027. Epub 2016 Mar 21. Review.

PMID:
26933765
20.

Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer.

Stone RL, Baggerly KA, Armaiz-Pena GN, Kang Y, Sanguino AM, Thanapprapasr D, Dalton HJ, Bottsford-Miller J, Zand B, Akbani R, Diao L, Nick AM, DeGeest K, Lopez-Berestein G, Coleman RL, Lutgendorf S, Sood AK.

Cancer Biol Ther. 2014 Jul;15(7):919-29. doi: 10.4161/cbt.28882. Epub 2014 Apr 23.

Supplemental Content

Support Center