Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Longitudinal characterization of cognitive and motor deficits in an excitotoxic lesion model of striatal dysfunction in non-human primates.

Lavisse S, Williams S, Lecourtois S, van Camp N, Guillermier M, Gipchtein P, Jan C, Goutal S, Eymin L, Valette J, Delzescaux T, Perrier AL, Hantraye P, Aron Badin R.

Neurobiol Dis. 2019 May 24;130:104484. doi: 10.1016/j.nbd.2019.104484. [Epub ahead of print]

PMID:
31132407
2.

Striatal tissue transplantation in non-human primates.

Kendall AL, Hantraye P, Palfi S.

Prog Brain Res. 2000;127:381-404. Review.

PMID:
11142037
6.
7.

Complex motor disturbances in a sequential double lesion rat model of striatonigral degeneration (multiple system atrophy).

Scherfler C, Puschban Z, Ghorayeb I, Goebel GP, Tison F, Jellinger K, Poewe W, Wenning GK.

Neuroscience. 2000;99(1):43-54.

PMID:
10924951
9.

Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington's disease.

Emerich DF, Cain CK, Greco C, Saydoff JA, Hu ZY, Liu H, Lindner MD.

Cell Transplant. 1997 May-Jun;6(3):249-66.

PMID:
9171158
10.

Striatal pre-enkephalin overexpression improves Huntington's disease symptoms in the R6/2 mouse model of Huntington's disease.

Bissonnette S, Vaillancourt M, Hébert SS, Drolet G, Samadi P.

PLoS One. 2013 Sep 11;8(9):e75099. doi: 10.1371/journal.pone.0075099. eCollection 2013.

11.

Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.

Barry J, Akopian G, Cepeda C, Levine MS.

J Neurosci. 2018 May 16;38(20):4678-4694. doi: 10.1523/JNEUROSCI.0434-18.2018. Epub 2018 Apr 24.

12.

Behavioral and morphological comparison of two nonhuman primate models of Huntington's disease.

Roitberg BZ, Emborg ME, Sramek JG, Palfi S, Kordower JH.

Neurosurgery. 2002 Jan;50(1):137-45; discussion 145-6.

PMID:
11844244
13.

Evaluation of [123I]IBZM pinhole SPECT for the detection of striatal dopamine D2 receptor availability in rats.

Scherfler C, Scholz SW, Donnemiller E, Decristoforo C, Oberladstätter M, Stefanova N, Diederen E, Virgolini I, Poewe W, Wenning GK.

Neuroimage. 2005 Feb 1;24(3):822-31. Epub 2004 Nov 24.

PMID:
15652317
14.

Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.

Schackel S, Pauly MC, Piroth T, Nikkhah G, Döbrössy MD.

Behav Brain Res. 2013 Nov 1;256:56-63. doi: 10.1016/j.bbr.2013.07.053. Epub 2013 Aug 3.

PMID:
23916743
15.

Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease.

Burns LH, Pakzaban P, Deacon TW, Brownell AL, Tatter SB, Jenkins BG, Isacson O.

Neuroscience. 1995 Feb;64(4):1007-17.

PMID:
7753372
16.
17.

Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum.

Cenci MA, Kalén P, Mandel RJ, Wictorin K, Björklund A.

Neuroscience. 1992;46(4):943-57.

PMID:
1347413
18.
19.

Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington's disease.

Kirch RD, Meyer PT, Geisler S, Braun F, Gehrig S, Langen KJ, von Hörsten S, Nikkhah G, Cassel JC, Döbrössy MD.

Behav Brain Res. 2013 Feb 15;239:15-26. doi: 10.1016/j.bbr.2012.10.048. Epub 2012 Nov 5.

PMID:
23137697
20.

Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson's disease: a longitudinal in-vivo study.

Molinet-Dronda F, Gago B, Quiroga-Varela A, Juri C, Collantes M, Delgado M, Prieto E, Ecay M, Iglesias E, Marín C, Peñuelas I, Obeso JA.

Neurobiol Dis. 2015 May;77:165-72. doi: 10.1016/j.nbd.2015.01.007. Epub 2015 Feb 12.

Supplemental Content

Support Center