Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Focused ultrasound-induced blood brain-barrier opening enhanced vascular permeability for GDNF delivery in Huntington's disease mouse model.

Lin CY, Tsai CH, Feng LY, Chai WY, Lin CJ, Huang CY, Wei KC, Yeh CK, Chen CM, Liu HL.

Brain Stimul. 2019 Apr 27. pii: S1935-861X(19)30203-7. doi: 10.1016/j.brs.2019.04.011. [Epub ahead of print]

PMID:
31079989
2.

Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery.

Lin CY, Hsieh HY, Pitt WG, Huang CY, Tseng IC, Yeh CK, Wei KC, Liu HL.

J Control Release. 2015 Aug 28;212:1-9. doi: 10.1016/j.jconrel.2015.06.010. Epub 2015 Jun 11.

PMID:
26071631
3.

Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model.

Lin CY, Hsieh HY, Chen CM, Wu SR, Tsai CH, Huang CY, Hua MY, Wei KC, Yeh CK, Liu HL.

J Control Release. 2016 Aug 10;235:72-81. doi: 10.1016/j.jconrel.2016.05.052. Epub 2016 May 26.

PMID:
27235980
4.

Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson's Disease.

Fan CH, Ting CY, Lin CY, Chan HL, Chang YC, Chen YY, Liu HL, Yeh CK.

Sci Rep. 2016 Jan 20;6:19579. doi: 10.1038/srep19579.

5.

Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington's disease.

Ebert AD, Barber AE, Heins BM, Svendsen CN.

Exp Neurol. 2010 Jul;224(1):155-62. doi: 10.1016/j.expneurol.2010.03.005. Epub 2010 Mar 19.

PMID:
20227407
6.

Targeted delivery of GDNF through the blood-brain barrier by MRI-guided focused ultrasound.

Wang F, Shi Y, Lu L, Liu L, Cai Y, Zheng H, Liu X, Yan F, Zou C, Sun C, Shi J, Lu S, Chen Y.

PLoS One. 2012;7(12):e52925. doi: 10.1371/journal.pone.0052925. Epub 2012 Dec 27.

7.

Potential Transfer of Polyglutamine and CAG-Repeat RNA in Extracellular Vesicles in Huntington's Disease: Background and Evaluation in Cell Culture.

Zhang X, Abels ER, Redzic JS, Margulis J, Finkbeiner S, Breakefield XO.

Cell Mol Neurobiol. 2016 Apr;36(3):459-70. doi: 10.1007/s10571-016-0350-7. Epub 2016 Mar 7.

8.

Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease.

McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, Zhou L, Pitzer MR, Berry-Kravis EM, Kordower JH.

Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9345-50. Epub 2006 Jun 2.

9.

Contrast-enhanced ultrasound imaging for the detection of focused ultrasound-induced blood-brain barrier opening.

Fan CH, Lin WH, Ting CY, Chai WY, Yen TC, Liu HL, Yeh CK.

Theranostics. 2014 Aug 1;4(10):1014-25. doi: 10.7150/thno.9575. eCollection 2014.

10.

A new drug design targeting the adenosinergic system for Huntington's disease.

Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, Lin CJ, Chen WP, Shen YC, Chen HM, Chen JB, Lai HL, Yang CW, Chiang MC, Wu YS, Chang C, Chen JF, Fang JM, Lin YL, Chern Y.

PLoS One. 2011;6(6):e20934. doi: 10.1371/journal.pone.0020934. Epub 2011 Jun 21.

11.

Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery.

Fan CH, Liu HL, Ting CY, Lee YH, Huang CY, Ma YJ, Wei KC, Yen TC, Yeh CK.

PLoS One. 2014 May 2;9(5):e96327. doi: 10.1371/journal.pone.0096327. eCollection 2014.

12.

Quantification of transient increase of the blood-brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles.

Shi L, Palacio-Mancheno P, Badami J, Shin DW, Zeng M, Cardoso L, Tu R, Fu BM.

Int J Nanomedicine. 2014 Sep 18;9:4437-48. doi: 10.2147/IJN.S68882. eCollection 2014.

13.

Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.

Reddy PH, Charles V, Williams M, Miller G, Whetsell WO Jr, Tagle DA.

Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):1035-45.

14.

Targeted shRNA-loaded liposome complex combined with focused ultrasound for blood brain barrier disruption and suppressing glioma growth.

Zhao G, Huang Q, Wang F, Zhang X, Hu J, Tan Y, Huang N, Wang Z, Wang Z, Cheng Y.

Cancer Lett. 2018 Apr 1;418:147-158. doi: 10.1016/j.canlet.2018.01.035. Epub 2018 Jan 12.

PMID:
29339208
15.

Delivery of Liposomes with Different Sizes to Mice Brain after Sonication by Focused Ultrasound in the Presence of Microbubbles.

Shen Y, Guo J, Chen G, Chin CT, Chen X, Chen J, Wang F, Chen S, Dan G.

Ultrasound Med Biol. 2016 Jul;42(7):1499-511. doi: 10.1016/j.ultrasmedbio.2016.01.019. Epub 2016 Apr 26.

PMID:
27126236
16.

AMPK-α1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease.

Ju TC, Chen HM, Chen YC, Chang CP, Chang C, Chern Y.

Biochim Biophys Acta. 2014 Sep;1842(9):1668-80. doi: 10.1016/j.bbadis.2014.06.012. Epub 2014 Jun 16.

18.

Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts.

Shen Y, Pi Z, Yan F, Yeh CK, Zeng X, Diao X, Hu Y, Chen S, Chen X, Zheng H.

Int J Nanomedicine. 2017 Aug 9;12:5613-5629. doi: 10.2147/IJN.S136401. eCollection 2017.

19.

Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

Chen CC, Sheeran PS, Wu SY, Olumolade OO, Dayton PA, Konofagou EE.

J Control Release. 2013 Dec 28;172(3):795-804. doi: 10.1016/j.jconrel.2013.09.025. Epub 2013 Oct 2.

20.

Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease.

Linares GR, Chiu CT, Scheuing L, Leng Y, Liao HM, Maric D, Chuang DM.

Exp Neurol. 2016 Jul;281:81-92. doi: 10.1016/j.expneurol.2016.04.003. Epub 2016 Apr 13.

PMID:
27085395

Supplemental Content

Support Center