Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.
2.

Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans.

Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M.

Aging Cell. 2008 Jun;7(3):394-404. doi: 10.1111/j.1474-9726.2008.00385.x. Epub 2008 Mar 10.

3.

FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity.

Lublin A, Isoda F, Patel H, Yen K, Nguyen L, Hajje D, Schwartz M, Mobbs C.

PLoS One. 2011;6(11):e27762. doi: 10.1371/journal.pone.0027762. Epub 2011 Nov 16.

4.

The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins.

Qi W, Gutierrez GE, Gao X, Dixon H, McDonough JA, Marini AM, Fisher AL.

Aging Cell. 2017 Oct;16(5):1125-1135. doi: 10.1111/acel.12651. Epub 2017 Aug 3.

5.

Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling.

Zhang M, Poplawski M, Yen K, Cheng H, Bloss E, Zhu X, Patel H, Mobbs CV.

PLoS Biol. 2009 Nov;7(11):e1000245. doi: 10.1371/journal.pbio.1000245. Epub 2009 Nov 17.

6.

Role of Hypothalamic Creb-Binding Protein in Obesity and Molecular Reprogramming of Metabolic Substrates.

Moreno CL, Yang L, Dacks PA, Isoda F, Deursen JM, Mobbs CV.

PLoS One. 2016 Nov 10;11(11):e0166381. doi: 10.1371/journal.pone.0166381. eCollection 2016.

7.

Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans.

Mouchiroud L, Molin L, Kasturi P, Triba MN, Dumas ME, Wilson MC, Halestrap AP, Roussel D, Masse I, Dallière N, Ségalat L, Billaud M, Solari F.

Aging Cell. 2011 Feb;10(1):39-54. doi: 10.1111/j.1474-9726.2010.00640.x. Epub 2010 Nov 15.

8.

Lipid-lowering fibrates extend C. elegans lifespan in a NHR-49/PPARalpha-dependent manner.

Brandstädt S, Schmeisser K, Zarse K, Ristow M.

Aging (Albany NY). 2013 Apr;5(4):270-5.

9.

Glucose delays age-dependent proteotoxicity.

Tauffenberger A, Vaccaro A, Aulas A, Vande Velde C, Parker JA.

Aging Cell. 2012 Oct;11(5):856-66. doi: 10.1111/j.1474-9726.2012.00855.x. Epub 2012 Aug 1.

10.

d-Allulose, a stereoisomer of d-fructose, extends Caenorhabditis elegans lifespan through a dietary restriction mechanism: A new candidate dietary restriction mimetic.

Shintani T, Sakoguchi H, Yoshihara A, Izumori K, Sato M.

Biochem Biophys Res Commun. 2017 Dec 2;493(4):1528-1533. doi: 10.1016/j.bbrc.2017.09.147. Epub 2017 Sep 28.

PMID:
28965946
11.

Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans.

Heestand BN, Shen Y, Liu W, Magner DB, Storm N, Meharg C, Habermann B, Antebi A.

PLoS Genet. 2013;9(7):e1003651. doi: 10.1371/journal.pgen.1003651. Epub 2013 Jul 25.

12.

N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans.

Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, Lithgow GJ, Gill MS.

Nature. 2011 May 12;473(7346):226-9. doi: 10.1038/nature10007.

13.

Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans.

Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC.

BMC Genet. 2015 Feb 3;16:8. doi: 10.1186/s12863-015-0167-2.

14.

A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans.

Chamoli M, Singh A, Malik Y, Mukhopadhyay A.

Aging Cell. 2014 Aug;13(4):641-55. doi: 10.1111/acel.12218. Epub 2014 Mar 21.

15.

Age-Dependent Neuroendocrine Signaling from Sensory Neurons Modulates the Effect of Dietary Restriction on Longevity of Caenorhabditis elegans.

Fletcher M, Kim DH.

PLoS Genet. 2017 Jan 20;13(1):e1006544. doi: 10.1371/journal.pgen.1006544. eCollection 2017 Jan.

16.

The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M, Trauger SA, Saghatelian A, Braas D, Christofk HR, Clarke CF, Teitell MA, Petrascheck M, Reue K, Jung ME, Frand AR, Huang J.

Nature. 2014 Jun 19;510(7505):397-401. doi: 10.1038/nature13264. Epub 2014 May 14.

17.

A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.

Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C.

PLoS Genet. 2008 Feb;4(2):e24. doi: 10.1371/journal.pgen.0040024.

18.

AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators.

Moreno-Arriola E, El Hafidi M, Ortega-Cuéllar D, Carvajal K.

PLoS One. 2016 Jan 29;11(1):e0148089. doi: 10.1371/journal.pone.0148089. eCollection 2016.

19.

Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan.

Vora M, Shah M, Ostafi S, Onken B, Xue J, Ni JZ, Gu S, Driscoll M.

PLoS Genet. 2013 Aug;9(8):e1003737. doi: 10.1371/journal.pgen.1003737. Epub 2013 Aug 29.

20.

Secrets of the lac operon. Glucose hysteresis as a mechanism in dietary restriction, aging and disease.

Mobbs CV, Mastaitis JW, Zhang M, Isoda F, Cheng H, Yen K.

Interdiscip Top Gerontol. 2007;35:39-68. Review.

Supplemental Content

Support Center